jflexcrf.Model Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of heideltime Show documentation
Show all versions of heideltime Show documentation
HeidelTime is a multilingual cross-domain temporal tagger that extracts temporal expressions from documents and normalizes them according to the TIMEX3 annotation standard.
/*
Copyright (C) 2010 by
*
* Cam-Tu Nguyen [email protected] [email protected]
* Xuan-Hieu Phan [email protected]
* College of Technology, Vietnamese University, Hanoi
*
* Graduate School of Information Sciences
* Tohoku University
*
* JVnTextPro-v.2.0 is a free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License,
* or (at your option) any later version.
*
* JVnTextPro-v.2.0 is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with JVnTextPro-v.2.0); if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
package jflexcrf;
import java.io.*;
import java.util.*;
// TODO: Auto-generated Javadoc
/**
* The Class Model.
*/
public class Model {
/** The tagger opt. */
public Option taggerOpt = null;
/** The tagger maps. */
public Maps taggerMaps = null;
/** The tagger dict. */
public Dictionary taggerDict = null;
/** The tagger f gen. */
public FeatureGen taggerFGen = null;
/** The tagger vtb. */
public Viterbi taggerVtb = null;
// feature weight
/** The lambda. */
double[] lambda = null;
/**
* Instantiates a new model.
*/
public Model() {
}
/**
* Instantiates a new model.
*
* @param taggerOpt the tagger opt
* @param taggerMaps the tagger maps
* @param taggerDict the tagger dict
* @param taggerFGen the tagger f gen
* @param taggerVtb the tagger vtb
*/
public Model(Option taggerOpt, Maps taggerMaps, Dictionary taggerDict,
FeatureGen taggerFGen, Viterbi taggerVtb) {
this.taggerOpt = taggerOpt;
this.taggerMaps = taggerMaps;
this.taggerDict = taggerDict;
this.taggerFGen = taggerFGen;
this.taggerVtb = taggerVtb;
}
// load the model
/**
* Inits the.
*
* @return true, if successful
*/
public boolean init() {
// open model file to load model here ... complete later
BufferedReader fin = null;
String modelFile = taggerOpt.modelDir + File.separator + taggerOpt.modelFile;
try {
fin = new BufferedReader(new InputStreamReader(new FileInputStream(modelFile), "UTF-8"));
// read context predicate map and label map
taggerMaps.readCpMaps(fin);
System.gc();
taggerMaps.readLbMaps(fin);
System.gc();
// read dictionary
taggerDict.readDict(fin);
System.gc();
// read features
taggerFGen.readFeatures(fin);
System.gc();
// close model file
fin.close();
} catch (IOException e) {
System.out.println("Couldn't open model file: " + modelFile);
System.out.println(e.toString());
return false;
}
// update feature weights
if (lambda == null) {
int numFeatures = taggerFGen.numFeatures();
lambda = new double[numFeatures];
for (int i = 0; i < numFeatures; i++) {
Feature f = (Feature)taggerFGen.features.get(i);
//System.out.println(f.idx);
lambda[f.idx] = f.wgt;
}
}
// call init method of Viterbi object
if (taggerVtb != null) {
taggerVtb.init(this);
}
return true;
}
/**
* Inference.
*
* @param seq the seq
*/
public void inference(List seq) {
taggerVtb.viterbiInference(seq);
}
/**
* Inference all.
*
* @param data the data
*/
public void inferenceAll(List data) {
System.out.println("Starting inference ...");
long start, stop, elapsed;
start = System.currentTimeMillis();
for (int i = 0; i < data.size(); i++) {
System.out.println("sequence " + Integer.toString(i + 1));
List seq = (List)data.get(i);
inference(seq);
}
stop = System.currentTimeMillis();
elapsed = stop - start;
System.out.println("Inference " + Integer.toString(data.size()) + " sequences completed!");
System.out.println("Inference time: " + Double.toString((double)elapsed / 1000) + " seconds");
}
} // end of class Model
© 2015 - 2025 Weber Informatics LLC | Privacy Policy