All Downloads are FREE. Search and download functionalities are using the official Maven repository.

jflexcrf.Viterbi Maven / Gradle / Ivy

/*
 Copyright (C) 2010 by
 * 
 * 	Cam-Tu Nguyen	[email protected] [email protected]
 *  Xuan-Hieu Phan  [email protected] 
 
 *  College of Technology, Vietnamese University, Hanoi
 * 
 * 	Graduate School of Information Sciences
 * 	Tohoku University
 *
 *  JVnTextPro-v.2.0 is a free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published
 * by the Free Software Foundation; either version 2 of the License,
 * or (at your option) any later version.
 *
 * JVnTextPro-v.2.0 is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with  JVnTextPro-v.2.0); if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 */

package jflexcrf;

import java.io.*;
import java.util.*;

// TODO: Auto-generated Javadoc
/**
 * The Class Viterbi.
 */
public class Viterbi {
    
    /** The model. */
    public Model model = null;
    
    /** The num labels. */
    int numLabels = 0;
    
    /** The Mi. */
    DoubleMatrix Mi = null;
    
    /** The Vi. */
    DoubleVector Vi = null;
    
    /**
     * The Class PairDblInt.
     */
    public class PairDblInt {
	
	/** The first. */
	public double first = 0.0;
	
	/** The second. */
	public int second = -1;
    } // enf of class PairDblInt    

    /** The memory size. */
    public int memorySize = 0;
    
    /** The memory. */
    public PairDblInt[][] memory = null;
    
    /**
     * Instantiates a new viterbi.
     */
    public Viterbi() {
    }
    
    /**
     * Inits the.
     *
     * @param model the model
     */
    public void init(Model model) {
	this.model = model;
	
	numLabels = model.taggerMaps.numLabels();
	
	Mi = new DoubleMatrix(numLabels, numLabels);
	Vi = new DoubleVector(numLabels);
	
	allocateMemory(100);
	
	// compute Mi once at initialization
	computeMi();
    }
    
    /**
     * Allocate memory.
     *
     * @param memorySize the memory size
     */
    public void allocateMemory(int memorySize) {
	this.memorySize = memorySize;
	memory = new PairDblInt[memorySize][numLabels];
	
	for (int i = 0; i < memorySize; i++) {
	    for (int j = 0; j < numLabels; j++) {
		memory[i][j] = new PairDblInt();
	    }
	}
    }
    
    /**
     * Compute mi.
     */
    public void computeMi() {
	Mi.assign(0.0);
	
	model.taggerFGen.startScanEFeatures();
	while (model.taggerFGen.hasNextEFeature()) {
	    Feature f = model.taggerFGen.nextEFeature();
	    
	    if (f.ftype == Feature.EDGE_FEATURE1) {
		Mi.mtrx[f.yp][f.y] += model.lambda[f.idx] * f.val;
	    }
	}
	
	for (int i = 0; i < Mi.rows; i++) {
	    for (int j = 0; j < Mi.cols; j++) {
		Mi.mtrx[i][j] = Math.exp(Mi.mtrx[i][j]);
	    }
	}
    }
    
    /**
     * Compute vi.
     *
     * @param seq the seq
     * @param pos the pos
     * @param Vi the vi
     * @param isExp the is exp
     */
    public void computeVi(List seq, int pos, DoubleVector Vi, boolean isExp) {
	Vi.assign(0.0);
	
	// start scan features for sequence "seq" at position "pos"
	model.taggerFGen.startScanSFeaturesAt(seq, pos);
	// examine all features at position "pos"
	while (model.taggerFGen.hasNextSFeature()) {
	    Feature f = model.taggerFGen.nextSFeature();
	    
	    if (f.ftype == Feature.STAT_FEATURE1) {
		Vi.vect[f.y] += model.lambda[f.idx] * f.val;
	    }
	}
	
	// take exponential operator
	if (isExp) {
	    for (int i = 0; i < Vi.len; i++) {
		Vi.vect[i] = Math.exp(Vi.vect[i]);
	    }
	}
    }
    
    // list is a List of PairDblInt    
    /**
     * Sum.
     *
     * @param cols the cols
     * @return the double
     */
    public double sum(PairDblInt[] cols) {
	double res = 0.0;
	
	for (int i = 0; i < numLabels; i++) {
	    res += cols[i].first;
	}
	
	if (res < 1 && res > -1) {
	    res = 1;
	}
	
	return res;
    }
    
    // list is a List of PairDblInt
    /**
     * Divide.
     *
     * @param cols the cols
     * @param val the val
     */
    public void divide(PairDblInt[] cols, double val) {
	for (int i = 0; i < numLabels; i++) {
	    cols[i].first /= val;
	}
    }
    
    // list is a List of PairDblInt
    /**
     * Find max.
     *
     * @param cols the cols
     * @return the int
     */
    public int findMax(PairDblInt[] cols) {
	int maxIdx = 0;
	double maxVal = -1.0;
	
	for (int i = 0; i < numLabels; i++) {
	    if (cols[i].first > maxVal) {
		maxVal = cols[i].first;
		maxIdx = i;
	    }
	}
	
	return maxIdx;
    }
    
    /**
     * Viterbi inference.
     *
     * @param seq the seq
     */
    public void viterbiInference(List seq) {
	int i, j, k;
	
	int seqLen = seq.size();
	if (seqLen <= 0) {
	    return;
	}	
	
	if (memorySize < seqLen) {
	    allocateMemory(seqLen);
	}
	
	// compute Vi for the first position in the sequence
	computeVi(seq, 0, Vi, true);
	for (j = 0; j < numLabels; j++) {
	    memory[0][j].first = Vi.vect[j];
	    memory[0][j].second = j;
	}	
	
	// scaling for the first position
	divide(memory[0], sum(memory[0]));
	
	// the main loop
	for (i = 1; i < seqLen; i++) {
	    // compute Vi at the position i
	    computeVi(seq, i, Vi, true);
	    
	    // for all possible labels at the position i
	    for (j = 0; j < numLabels; j++) {
		memory[i][j].first = 0.0;
		memory[i][j].second = 0;
		
		// find the maximal value and its index and store them in memory
		// for later tracing back to find the best path
		for (k = 0; k < numLabels; k++) {
		    double tempVal = memory[i - 1][k].first *
					Mi.mtrx[k][j] * Vi.vect[j];
		    if (tempVal > memory[i][j].first) {
			memory[i][j].first = tempVal;
			memory[i][j].second = k;
		    }
		}
	    }
	    
	    // scaling for memory at position i
	    divide(memory[i], sum(memory[i]));	    
	}
	
	// viterbi backtrack to find the best label path
	int maxIdx = findMax(memory[seqLen - 1]);
	((Observation)seq.get(seqLen - 1)).modelLabel = maxIdx;
	for (i = seqLen - 2; i >= 0; i--) {
	    ((Observation)seq.get(i)).modelLabel = 
			memory[i + 1][maxIdx].second;
	    maxIdx = ((Observation)seq.get(i)).modelLabel;
	}
    }
    
} // end of class Viterbi





© 2015 - 2025 Weber Informatics LLC | Privacy Policy