jmaxent.Inference Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of heideltime Show documentation
Show all versions of heideltime Show documentation
HeidelTime is a multilingual cross-domain temporal tagger that extracts temporal expressions from documents and normalizes them according to the TIMEX3 annotation standard.
/*
Copyright (C) 2010 by
*
* Cam-Tu Nguyen
* [email protected] or [email protected]
*
* Xuan-Hieu Phan
* [email protected]
*
* College of Technology, Vietnamese University, Hanoi
* Graduate School of Information Sciences, Tohoku University
*
* JVnTextPro-v.2.0 is a free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License,
* or (at your option) any later version.
*
* JVnTextPro-v.2.0 is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with JVnTextPro-v.2.0); if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
package jmaxent;
import java.util.*;
// TODO: Auto-generated Javadoc
/**
* The Class Inference.
*/
public class Inference {
/** The model. */
public Model model = null;
/** The num labels. */
public int numLabels = 0;
// for classification
/** The temp. */
double[] temp = null;
/**
* Instantiates a new inference.
*/
public Inference() {
// do nothing
}
/**
* Inits the.
*/
public void init() {
numLabels = model.data.numLabels();
temp = new double[numLabels];
}
/**
* Classify.
*
* @param obsr the obsr
*/
public void classify(Observation obsr) {
int i;
for (i = 0; i < numLabels; i++) {
temp[i] = 0.0;
}
model.feaGen.startScanFeatures(obsr);
while (model.feaGen.hasNextFeature()) {
Feature f = model.feaGen.nextFeature();
temp[f.label] += model.lambda[f.idx] * f.val;
}
double max = temp[0];
int maxLabel = 0;
for (i = 1; i < numLabels; i++) {
if (max < temp[i]) {
max = temp[i];
maxLabel = i;
}
}
obsr.modelLabel = maxLabel;
}
/**
* Do inference.
*
* @param data the data
*/
public void doInference(List data) {
for (int i = 0; i < data.size(); i++) {
Observation obsr = (Observation)data.get(i);
classify(obsr);
}
}
} // end of class Inference
© 2015 - 2025 Weber Informatics LLC | Privacy Policy