jvnsegmenter.WordTrainGenerating Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of heideltime Show documentation
Show all versions of heideltime Show documentation
HeidelTime is a multilingual cross-domain temporal tagger that extracts temporal expressions from documents and normalizes them according to the TIMEX3 annotation standard.
/*
Copyright (C) 2010 by
*
* Cam-Tu Nguyen
* [email protected] or [email protected]
*
* Xuan-Hieu Phan
* [email protected]
*
* College of Technology, Vietnamese University, Hanoi
* Graduate School of Information Sciences, Tohoku University
*
* JVnTextPro-v.2.0 is a free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License,
* or (at your option) any later version.
*
* JVnTextPro-v.2.0 is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with JVnTextPro-v.2.0); if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
package jvnsegmenter;
import java.io.File;
import java.util.Vector;
import org.w3c.dom.Element;
import jvntextpro.data.TaggingData;
import jvntextpro.data.TrainDataGenerating;
// TODO: Auto-generated Javadoc
/**
* The Class WordTrainGenerating.
*/
public class WordTrainGenerating extends TrainDataGenerating {
/** The model dir. */
String modelDir;
/**
* Instantiates a new word train generating.
*
* @param modelDir the model dir
*/
public WordTrainGenerating(String modelDir){
this.modelDir = modelDir;
init();
}
/* (non-Javadoc)
* @see jvntextpro.data.TrainDataGenerating#init()
*/
@Override
public void init() {
// TODO Auto-generated method stub
reader = new IOB2DataReader();
tagger = new TaggingData();
//Read feature template file
String templateFile = modelDir + File.separator + "featuretemplate.xml";
Vector nodes = BasicContextGenerator.readFeatureNodes(templateFile);
for (int i = 0; i < nodes.size(); ++i){
Element node = nodes.get(i);
String cpType = node.getAttribute("value");
BasicContextGenerator contextGen = null;
if (cpType.equals("Conjunction")){
contextGen = new ConjunctionContextGenerator(node);
}
else if (cpType.equals("Lexicon")){
contextGen = new LexiconContextGenerator(node);
LexiconContextGenerator.loadVietnameseDict(modelDir + File.separator + "VNDic_UTF-8.txt");
LexiconContextGenerator.loadViLocationList(modelDir + File.separator + "vnlocations.txt");
LexiconContextGenerator.loadViPersonalNames(modelDir + File.separator + "vnpernames.txt");
}
else if (cpType.equals("Regex")){
contextGen = new RegexContextGenerator(node);
}
else if (cpType.equals("SyllableFeature")){
contextGen = new SyllableContextGenerator(node);
}
else if (cpType.equals("ViSyllableFeature")){
contextGen = new VietnameseContextGenerator(node);
}
if (contextGen != null)
tagger.addContextGenerator(contextGen);
}
}
/**
* The main method.
*
* @param args the arguments
*/
public static void main(String [] args){
//tagging
if (args.length != 2){
System.out.println("WordTrainGenerating [Model Dir] [File/Folder]");
System.out.println("Generating training data for word segmentation with FlexCRFs++ or jvnmaxent (in JVnTextPro)");
System.out.println("Model Dir: directory containing featuretemple file");
System.out.println("Input File/Folder: file/folder name containing data manually tagged for training");
return;
}
WordTrainGenerating trainGen = new WordTrainGenerating(args[0]);
trainGen.generateTrainData(args[1], args[1]);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy