
gov.nist.math.jama.CholeskyDecomposition Maven / Gradle / Ivy
Show all versions of cayley Show documentation
package gov.nist.math.jama;
/**
* Cholesky Decomposition.
*
* For a symmetric, positive definite matrix A, the Cholesky decomposition is an
* lower triangular matrix L so that A = L*L'.
*
* If the matrix is not symmetric or positive definite, the constructor returns
* a partial decomposition and sets an internal flag that may be queried by the
* isSPD() method.
*/
public class CholeskyDecomposition implements java.io.Serializable {
/*
* ------------------------ Class variables ------------------------
*/
/**
* Array for internal storage of decomposition.
*
* @serial internal array storage.
*/
private double[][] L;
/**
* Row and column dimension (square matrix).
*
* @serial matrix dimension.
*/
private int n;
/**
* Symmetric and positive definite flag.
*
* @serial is symmetric and positive definite flag.
*/
private boolean isSpd;
/*
* ------------------------ Constructor ------------------------
*/
/**
* Cholesky algorithm for symmetric and positive definite matrix. Structure
* to access L and isspd flag.
*
* @param arg
* Square, symmetric matrix.
*/
public CholeskyDecomposition(JamaMatrix arg) {
// Initialize
double[][] A = arg.getArray();
n = arg.getRowDimension();
L = new double[n][n];
isSpd = (arg.getColumnDimension() == n);
// Main loop
for (int j = 0; j < n; j++) {
double[] Lrowj = L[j];
double d = 0.0;
for (int k = 0; k < j; k++) {
double[] Lrowk = L[k];
double s = 0.0;
for (int i = 0; i < k; i++) {
s += Lrowk[i] * Lrowj[i];
}
Lrowj[k] = s = (A[j][k] - s) / L[k][k];
d = d + s * s;
isSpd = isSpd & (A[k][j] == A[j][k]);
}
d = A[j][j] - d;
isSpd = isSpd & (d > 0.0);
L[j][j] = Math.sqrt(Math.max(d, 0.0));
for (int k = j + 1; k < n; k++) {
L[j][k] = 0.0;
}
}
}
/*
* ------------------------ Temporary, experimental code.
*/
// // Array for internal storage of right triangular decomposition.
// private transient double[][] R;
// /**
// * Right Triangular Cholesky Decomposition.
// *
// * For a symmetric, positive definite matrix A, the Right Cholesky
// * decomposition is an upper triangular matrix R so that A = R'*R. This
// * constructor computes R with the Fortran inspired column oriented
// * algorithm used in LINPACK and MATLAB. In Java, we suspect a row
// oriented,
// * lower triangular decomposition is faster. We have temporarily included
// * this constructor here until timing experiments confirm this suspicion.
// *
// * @param A
// * Square, symmetric matrix.
// * @param rightflag
// * Actual value ignored.
// * @return Structure to access R and isSpd flag.
// */
// public CholeskyDecomposition(Matrix arg, int rightflag) {
// // Initialize
// double[][] A = arg.getArray();
// n = arg.getColumnDimension();
// R = new double[n][n];
// isSpd = (arg.getColumnDimension() == n);
// // Main loop
// for (int j = 0; j < n; j++) {
// double d = 0.0;
// for (int k = 0; k < j; k++) {
// double s = A[k][j];
// for (int i = 0; i < k; i++) {
// s = s - R[i][k] * R[i][j];
// }
// R[k][j] = s = s / R[k][k];
// d = d + s * s;
// isSpd = isSpd & (A[k][j] == A[j][k]);
// }
// d = A[j][j] - d;
// isSpd = isSpd & (d > 0.0);
// R[j][j] = Math.sqrt(Math.max(d, 0.0));
// for (int k = j + 1; k < n; k++) {
// R[k][j] = 0.0;
// }
// }
// }
//
// /**
// * Return upper triangular factor.
// *
// * @return R
// */
// public Matrix getR() {
// return new Matrix(R, n, n);
// }
/*
* ------------------------ End of temporary code. ------------------------
*/
/*
* ------------------------ Public Methods ------------------------
*/
/**
* Is the matrix symmetric and positive definite?
*
* @return true if A is symmetric and positive definite.
*/
public boolean isSPD() {
return isSpd;
}
/**
* Return triangular factor.
*
* @return L
*/
public JamaMatrix getL() {
return new JamaMatrix(L, n, n);
}
/**
* Solve A*X = B
*
* @param B
* A Matrix with as many rows as A and any number of columns.
* @return X so that L*L'*X = B
* @exception IllegalArgumentException
* Matrix row dimensions must agree.
* @exception RuntimeException
* Matrix is not symmetric positive definite.
*/
public JamaMatrix solve(JamaMatrix B) {
if (B.getRowDimension() != n) {
throw new IllegalArgumentException("Matrix row dimensions must agree.");
}
if (!isSpd) {
throw new RuntimeException("Matrix is not symmetric positive definite.");
}
// Copy right hand side.
double[][] X = B.getArrayCopy();
int nx = B.getColumnDimension();
// Solve L*Y = B;
for (int k = 0; k < n; k++) {
for (int j = 0; j < nx; j++) {
for (int i = 0; i < k; i++) {
X[k][j] -= X[i][j] * L[k][i];
}
X[k][j] /= L[k][k];
}
}
// Solve L'*X = Y;
for (int k = n - 1; k >= 0; k--) {
for (int j = 0; j < nx; j++) {
for (int i = k + 1; i < n; i++) {
X[k][j] -= X[i][j] * L[i][k];
}
X[k][j] /= L[k][k];
}
}
return new JamaMatrix(X, n, nx);
}
private static final long serialVersionUID = 1;
}