math.stats.distribution.ChiSquare Maven / Gradle / Ivy
Show all versions of finwhale Show documentation
/*
* Copyright 2013 SPZ
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package math.stats.distribution;
import math.rng.DefaultRng;
import math.rng.PseudoRandom;
/**
* The Χ2(k) distribution for x >= 0 with PDF:
*
* f(x; k) = (1 / (2k/2 * Γ(k/2))) * x(k/2) - 1 * e-x/2
* where Γ() is the Gamma function.
*
* Valid parameter ranges: k > 0; x > 0 (if
* k = 1, otherwise x >= 0).
*
* https://en.wikipedia.org/wiki/Chi-squared_distribution
*/
public class ChiSquare extends AbstractContinuousDistribution {
private static final double BIG = 100.0;
private final double degreesOfFreedom;
private final Gamma gamma;
public ChiSquare(double degreesOfFreedom) {
this(DefaultRng.newPseudoRandom(), degreesOfFreedom);
}
public ChiSquare(PseudoRandom prng, double degreesOfFreedom) {
super(prng);
if (degreesOfFreedom <= 0.0) {
throw new IllegalArgumentException("degreesOfFreedom <= 0.0 : "
+ degreesOfFreedom);
}
this.degreesOfFreedom = degreesOfFreedom;
this.gamma = new Gamma(this.prng, (this.degreesOfFreedom / 2.0), 2.0);
}
@Override
public double pdf(double x) {
if (x <= 0.0) {
return 0.0;
}
return gamma.pdf(x);
}
@Override
public double cdf(double x) {
if (x <= 0.0) {
return 0.0;
}
if (x >= BIG * degreesOfFreedom) {
return 1.0;
}
return gamma.cdf(x);
}
@Override
public double sample() {
return gamma.sample();
}
/**
* Inverse of the Chi-squared cumulative distribution function.
*
* @return the value X for which P(x<=X).
*/
public double inverse(double probability) {
if (probability <= 0.0) {
return 0.0; // < 0 is not entirely correct (TODO)
}
if (probability >= 1.0) {
return Double.MAX_VALUE; // > 1 is not entirely correct (TODO)
}
return gamma.inverse(probability);
}
@Override
public double mean() {
return degreesOfFreedom;
}
@Override
public double variance() {
return 2.0 * degreesOfFreedom;
}
/**
* @return the degreesOfFreedom
*/
public double getDegreesOfFreedom() {
return degreesOfFreedom;
}
@Override
public String toString() {
return getSimpleName(degreesOfFreedom);
}
}