math.stats.distribution.Exponential Maven / Gradle / Ivy
Show all versions of finwhale Show documentation
/*
* Copyright 2013 SPZ
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package math.stats.distribution;
import math.FastMath;
import math.rng.DefaultRng;
import math.rng.PseudoRandom;
/**
* The Exponential(λ) distribution for x >= 0 with PDF:
*
* f(x; λ) = λ * e-λ * x where λ
* > 0.
*
* Valid parameter ranges: x >= 0; λ > 0.
*
* https://en.wikipedia.org/wiki/Exponential_distribution
*/
public class Exponential extends AbstractContinuousDistribution {
private static final double BIG = 100.0;
private final double lambda;
public Exponential(double lambda) {
this(DefaultRng.newPseudoRandom(), lambda);
}
public Exponential(PseudoRandom prng, double lambda) {
super(prng);
if (lambda <= 0.0) {
throw new IllegalArgumentException("lambda <= 0.0 : " + lambda);
}
this.lambda = lambda;
}
@Override
public double pdf(double x) {
return x < 0.0 ? 0.0 : lambda * FastMath.exp(-lambda * x);
}
@Override
public double cdf(double x) {
if (x <= 0.0) {
return 0.0;
}
double y = lambda * x;
if (y >= BIG) {
return 1.0;
}
return -Math.expm1(-y);
}
@Override
public double sample() {
double u;
do {
u = prng.nextDouble();
} while (u == 0.0 || u == 1.0);
return -Math.log(u) / lambda;
}
@Override
public double mean() {
return (1.0 / lambda);
}
@Override
public double variance() {
return (1.0 / (lambda * lambda));
}
@Override
public String toString() {
return getSimpleName(lambda);
}
}