math.stats.distribution.Weibull Maven / Gradle / Ivy
Show all versions of finwhale Show documentation
/*
* Copyright 2018 SPZ
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package math.stats.distribution;
import math.FastGamma;
import math.FastMath;
import math.rng.DefaultRng;
import math.rng.PseudoRandom;
/**
* TODO
*
* https://en.wikipedia.org/wiki/Weibull_distribution
*/
public class Weibull extends AbstractContinuousDistribution {
// private static final double BIG = 100.0;
private final double scale_lambda;
private final double shape_k;
// helper constants
private final double inverse_scale;
private final double inverse_shape;
private final double shape_dividedby_scale;
// cached mean
private double cached_mean = Double.NaN;
public Weibull(double scale /* lambda */, double shape /* k */) {
this(DefaultRng.newPseudoRandom(), scale, shape);
}
public Weibull(PseudoRandom prng, double scale /* lambda */, double shape /* k */) {
super(prng);
if (scale <= 0.0) {
throw new IllegalArgumentException("scale <= 0.0");
}
if (shape <= 0.0) {
throw new IllegalArgumentException("shape <= 0.0");
}
this.scale_lambda = scale;
this.shape_k = shape;
// pre-computed constants
this.inverse_scale = 1.0 / scale;
this.inverse_shape = 1.0 / shape;
this.shape_dividedby_scale = inverse_scale * shape_k;
}
/**
* {@inheritDoc}
*/
@Override
public double pdf(double x) {
if (x < 0.0) {
return 0.0;
}
double xscale = x / scale_lambda;
double xscalepow = FastMath.pow(xscale, shape_k - 1);
double xscalepowshape = xscalepow * xscale;
return shape_dividedby_scale * xscalepow * FastMath.exp(-xscalepowshape);
}
/**
* {@inheritDoc}
*/
@Override
public double cdf(double x) {
if (x <= 0.0) {
return 0.0;
}
double y = FastMath.pow(inverse_scale * x, shape_k);
return -Math.expm1(-y);
}
/**
* {@inheritDoc}
*/
@Override
public double sample() {
return inverse(prng.nextDouble());
}
/**
* {@inheritDoc}
*/
@Override
public double mean() {
if (Double.isNaN(cached_mean)) {
cached_mean = scale_lambda * FastMath.exp(FastGamma.logGamma(1.0 + inverse_shape));
}
return cached_mean;
}
/**
* {@inheritDoc}
*/
@Override
public double variance() {
double mean = mean();
return ((scale_lambda * scale_lambda) * FastMath.exp(FastGamma.logGamma(1.0 + (2.0 * inverse_shape))))
- (mean * mean);
}
/**
* Inverse of the Weibull cumulative distribution function.
*
* @return the value X for which P(x<=X).
*/
public double inverse(double probability) {
if (probability <= 0.0) {
return 0.0; // < 0 is not entirely correct (TODO)
}
if (probability >= 1.0) {
return Double.MAX_VALUE; // > 1 is not entirely correct (TODO)
}
return scale_lambda * FastMath.pow(-FastMath.log1p(-probability), inverse_shape);
}
/**
* Returns the shape parameter of this distribution.
*
* @return the shape parameter.
*/
public double getShape() {
return shape_k;
}
/**
* Returns the scale parameter of this distribution.
*
* @return the scale parameter.
*/
public double getScale() {
return scale_lambda;
}
@Override
public String toString() {
return getSimpleName(scale_lambda, shape_k);
}
}