math.stats.distribution.fit.GoodnessOfFit Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finwhale Show documentation
Show all versions of finwhale Show documentation
Statistical distributions library (in statu nascendi)
/*
* Class: GofFormat
* Description:
* Environment: Java
* Software: SSJ
* Copyright (C) 2001 Pierre L'Ecuyer and Universite de Montreal
* Organization: DIRO, Universite de Montreal
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package math.stats.distribution.fit;
import java.util.Arrays;
import math.Arithmetic;
import math.stats.distribution.ContinuousDistribution;
/**
* Provides methods for the computation of goodness of fit tests
* (Anderson-Darling and Kolomogorov-Smirnov).
*/
public final class GoodnessOfFit {
/**
* Computes a goodness of fit test {@link UniformTestStatistics.Result} for
* the given data and the postulated model distribution.
*
* @param observations
* the list of observations to explore
* @param distribution
* the hypothesized distribution of the empirical data
* @return the {@link UniformTestStatistics.Result} for the given
* observations and distribution
*/
public static UniformTestStatistics.Result computeStatistics(double[] observations,
ContinuousDistribution distribution) {
double[] transformed = Transformer.uniform(observations, distribution);
Arrays.sort(transformed);
UniformTestStatistics.Result statistics = UniformTestStatistics.compareEmpiricalToUniform(transformed);
if (observations.length == 1) {
// one wants obs[0], not u[0]
statistics.MEAN = observations[0];
}
return statistics;
}
/**
* Computes the Anderson-Darling and Kolomogorov-Smirnov tests' p-values for
* the given test statistics.
*
* @param testStatistics
* the the {@link UniformTestStatistics.Result} to examine
* @return the {@link UniformTestStatistics.PValue} for the given test
* statistics
*/
public static UniformTestStatistics.PValue computePValues(UniformTestStatistics.Result testStatistics) {
if (testStatistics == null) {
throw new IllegalArgumentException("testStatistics == null");
}
if (testStatistics.N < 1) {
throw new IllegalArgumentException(
"testStatistics doesn't contain any observations (N = " + testStatistics.N + ")");
}
UniformTestStatistics.PValue pval = new UniformTestStatistics.PValue();
pval.N = testStatistics.N;
if (testStatistics.N == 1) {
pval.KSP_PVAL = testStatistics.KSP;
return pval;
}
if (!Arithmetic.isBadNum(testStatistics.KSP)) {
// Kolmogorov-Smirnov+
// double p = KolmogorovSmirnovP.barF(testStatistics.N, testStatistics.KSP);
// pval.KSP_PVAL = p;
}
if (!Arithmetic.isBadNum(testStatistics.KSM)) {
// Kolmogorov-Smirnov-
// double p = KolmogorovSmirnovP.barF(testStatistics.N, testStatistics.KSM);
// pval.KSM_PVAL = p;
}
if (!Arithmetic.isBadNum(testStatistics.KS)) {
// Kolmogorov-Smirnov
double p = FastKolmogorovSmirnov.barF(testStatistics.N, testStatistics.KS);
pval.KS_PVAL = p;
}
if (!Arithmetic.isBadNum(testStatistics.AD)) {
// Anderson-Darling
double p = AndersonDarling.barF(testStatistics.N, testStatistics.AD);
pval.AD_PVAL = p;
}
return pval;
}
private GoodnessOfFit() {
throw new AssertionError();
}
}