math.stats.distribution.Gamma Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finwhale Show documentation
Show all versions of finwhale Show documentation
Statistical distributions library (in statu nascendi)
The newest version!
package math.stats.distribution;
import math.FastGamma;
import math.FastMath;
import math.rng.DefaultRng;
import math.rng.PseudoRandom;
import math.stats.ProbabilityFuncs;
/**
* The Γ(x; k, θ) distribution for x >= 0 with PDF:
*
* f(x; k, θ) = (x^(k-1) * e^(-x/θ)) / (θ^k * Γ(k))
* where Γ() is the Gamma function.
*
* Valid parameter ranges: k > 0, θ > 0,
* x >= 0.
*
* Note: For a Gamma distribution to have the mean E(X) and variance
* Var(X), set the parameters as follows:
*
*
* k = E(X) * E(X) / Var(X)
* θ = Var(X) / E(X)
*
*/
public class Gamma extends AbstractContinuousDistribution {
private final double shape_k;
private final double scale_theta;
private final double rate_beta;
public Gamma(final double shape /* k */) {
this(shape, 1.0 /* scale */);
}
public Gamma(final PseudoRandom prng, final double shape /* k */) {
this(prng, shape, 1.0 /* scale */);
}
public Gamma(final double shape /* k */, final double scale /* theta */) {
this(DefaultRng.newPseudoRandom(), shape, scale);
}
public Gamma(final PseudoRandom prng, final double shape /* k */,
final double scale /* theta */) {
super(prng);
if (shape <= 0.0) {
throw new IllegalArgumentException("shape <= 0.0");
}
if (scale <= 0.0) {
throw new IllegalArgumentException("scale <= 0.0");
}
this.shape_k = shape;
this.scale_theta = scale;
this.rate_beta = (1.0 / this.scale_theta);
}
/**
* Returns the probability distribution function.
*
* @param x
* Where to compute the density function.
*
* @return The value of the gamma density at x.
*/
@Override
public double pdf(final double x) {
if (x < 0.0) {
throw new IllegalArgumentException("x < 0.0");
}
if (x == 0.0) {
if (shape_k == 1.0) {
return rate_beta;
} else if (shape_k < 1.0) {
return Double.POSITIVE_INFINITY;
} else {
return 0.0;
}
}
if (shape_k == 1.0) {
return rate_beta * FastMath.exp(-rate_beta * x);
}
return rate_beta
* FastMath.exp((shape_k - 1.0) * Math.log(rate_beta * x)
- (rate_beta * x) - FastGamma.logGamma(shape_k));
}
@Override
public double cdf(final double x) {
return ProbabilityFuncs.gamma(shape_k, rate_beta, x);
}
/**
* This implementation uses the following algorithms:
*
* For 0 < k < 1:
* Ahrens, J. H. and Dieter, U., Computer methods for sampling from
* gamma, beta, Poisson and binomial distributions. Computing, 12,
* 223-246, 1974.
*
*
* For k >= 1:
* Marsaglia and Tsang, A Simple Method for Generating Gamma
* Variables. ACM Transactions on Mathematical Software, Volume 26 Issue
* 3, September, 2000.
*
*
* @return random value sampled from the Γ(k, θ) distribution
*/
@Override
public double sample() {
if (shape_k < 1.0) {
// [1]: p. 228, Algorithm GS
final double bGS = 1.0 + shape_k / Math.E;
while (true) {
// Step 1:
double u = prng.nextDouble();
double p = bGS * u;
if (p <= 1.0) {
// Step 2:
double x = FastMath.pow(p, 1.0 / shape_k);
double u2 = prng.nextDouble();
if (u2 > FastMath.exp(-x)) {
// reject
continue;
} else {
return scale_theta * x;
}
} else {
// Step 3:
double x = -1 * Math.log((bGS - p) / shape_k);
double u2 = prng.nextDouble();
if (u2 > FastMath.pow(x, shape_k - 1)) {
// reject
continue;
} else {
return scale_theta * x;
}
}
}
}
// shape >= 1
final double d = shape_k - 0.333333333333333333;
final double c = 1.0 / (3.0 * Math.sqrt(d));
while (true) {
double x = prng.nextGaussian();
double cx = 1.0 + c * x;
double v = cx * cx * cx;
if (v <= 0.0) {
continue;
}
double x2 = x * x;
double u = prng.nextDouble();
// squeeze
if (u < 1.0 - 0.0331 * x2 * x2) {
return scale_theta * d * v;
}
if (Math.log(u) < 0.5 * x2 + d * (1.0 - v + Math.log(v))) {
return scale_theta * d * v;
}
}
}
@Override
public double mean() {
return shape_k * scale_theta; // k * theta
}
@Override
public double variance() {
return shape_k * scale_theta * scale_theta; // k * (theta^2)
}
/**
* Inverse of the Gamma cumulative distribution function.
*
* @return the value X for which P(x<=X).
*/
public double inverse(double probability) {
if (probability <= 0.0) {
return 0.0; // < 0 is not entirely correct (TODO)
}
if (probability >= 1.0) {
return Double.MAX_VALUE; // > 1 is not entirely correct (TODO)
}
return findRoot(probability, mean(), 0.0, Double.MAX_VALUE);
}
/**
* Returns the shape parameter of this distribution.
*
* @return the shape parameter.
*/
public double getShape() {
return shape_k;
}
/**
* Returns the scale parameter of this distribution.
*
* @return the scale parameter.
*/
public double getScale() {
return scale_theta;
}
@Override
public String toString() {
return getSimpleName(shape_k, scale_theta);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy