All Downloads are FREE. Search and download functionalities are using the official Maven repository.

math.stats.distribution.fit.AndersonDarling Maven / Gradle / Ivy

The newest version!
/*
 * Class:        AndersonDarlingDistQuick
 * Description:  Anderson-Darling distribution
 * Environment:  Java
 * Software:     SSJ
 * Copyright (C) 2001  Pierre L'Ecuyer and Universite de Montreal
 * Organization: DIRO, Universite de Montreal
 * @author       Richard Simard
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package math.stats.distribution.fit;

import math.FastMath;

/**
 * Methods for the Anderson?Darling distribution of the *Anderson?Darling* test
 * statistic {@code A_n^2} given an ordered sample of {@code n} independent
 * uniforms {@code U_i} over {@code (0,1)}.
 * 

* https://en.wikipedia.org/wiki/Anderson%E2%80%93Darling_test */ final class AndersonDarling { /** * Computes the complementary distribution function * bar(F)n(x) with parameter {@code n}. */ static double barF(int n, double x) { if (n <= 0) { throw new IllegalArgumentException("n <= 0 : " + n); } if (n == 1) { return barF_N_1(x); } if (x <= 0.0) { return 1.0; } if (x >= AD_BIG) { return 0.0; } double q; if (x > 5.0) { // Grace-Wood approximation in upper tail double nd = n; q = (0.23945 * FastMath.pow(nd, -0.9379) - 0.1201 * FastMath.pow(nd, -0.96) - 1.0002816) * x - 1.437 * FastMath.pow(nd, -0.9379) + 1.441 * FastMath.pow(nd, -0.96) - 0.0633101; return FastMath.pow(x, -0.48897) * FastMath.exp(q); } if (x <= 0.2) { return 1.0 - cdf(n, x); } final double H = 0.05; // the step of the interpolation table final int i = (int) (1 + x / H); q = x / H - i; // Newton backwards quadratic interpolation double res = (F2AD[i - 2] - 2.0 * F2AD[i - 1] + F2AD[i]) * q * (q + 1.0) / 2.0 + (F2AD[i] - F2AD[i - 1]) * q + F2AD[i]; // Empirical correction in 1/n res += (CoAD[i] * (q + 1.0) - CoAD[i - 1] * q) / n; res = 1.0 - res; if (res >= 1.0) { return 1.0; } if (res <= 0.0) { return 0.0; } return res; } /** * Computes the {@code Anderson?Darling} distribution function * {@code F_n(x)} at {@code x} for sample size {@code n}. *

* For * {@code 0.2 < x < 5}, the asymptotic distribution was first computed by * numerical integration; then a linear correction {@code O(1/n)} obtained * by simulation was added. For {@code x > 5}, the Grace-Wood empirical * approximation is used. For * {@code x < 0.2}, the Marsaglias? approximation is used. * * For {@code n > 6}, the method gives at least 3 decimal digits of * precision except for small {@code x}; for {@code n <= 6}, it gives at * least 2 decimal digits of precision except for small {@code x}. For * {@code n = 1}, the exact formula is used. */ static double cdf(int n, double x) { if (n <= 0) { throw new IllegalArgumentException("n <= 0 : " + n); } if (n == 1) { return cdf_N_1(x); } if (x <= 0.0) { return 0.0; } if (x >= 100.0) { return 1.0; } if (x <= 0.2) { return lower_Marsaglia(n, x); } return 1.0 - barF(n, x); } private static double cdf_N_1(double x) { // The Anderson-Darling distribution for N = 1 if (x <= 0.38629436111989062) { return 0.0; } if (x >= 37.816242111357) { return 1.0; } return Math.sqrt(1.0 - 4.0 * FastMath.exp(-x - 1.0)); } private static double barF_N_1(double x) { if (x <= 3.8629436111989E-1) { return 1.0; } if (x >= AD_BIG) { return 0.0; } double q; if (x < 6.0) { q = 1.0 - 4.0 * FastMath.exp(-x - 1.0); return 1.0 - Math.sqrt(q); } q = 4.0 * FastMath.exp(-x - 1.0); return 0.5 * q * (1.0 + 0.25 * q * (1.0 + 0.5 * q * (1.0 + 0.125 * q * (5.0 + 3.5 * q)))); } private static double lower_Marsaglia(int n, double x) { // queue inf?rieure de l'algorithme de Marsaglia pour n = inf double p0 = (2.00012 + (0.247105 - (0.0649821 - (0.0347962 - (0.011672 - 0.00168691 * x) * x) * x) * x) * x); p0 *= FastMath.exp(-1.2337141 / x) / Math.sqrt(x); return p0 >= 0.0 ? p0 : 0.0; } // x infinity for Anderson-Darling private static final double AD_BIG = 1000.0; // Tables for the approximation of the Anderson-Darling distribution private static final double[] F2AD = new double[103]; private static final double[] CoAD = new double[103]; static { F2AD[0] = 0.0; F2AD[1] = 1.7315E-10; F2AD[2] = 2.80781E-5; F2AD[3] = 1.40856E-3; F2AD[4] = 9.58772E-3; F2AD[5] = 2.960552E-2; F2AD[6] = 6.185146E-2; F2AD[7] = 1.0357152E-1; F2AD[8] = 1.5127241E-1; F2AD[9] = 2.0190317E-1; F2AD[10] = 2.5318023E-1; F2AD[11] = 3.0354278E-1; F2AD[12] = 3.5200015E-1; F2AD[13] = 3.9797537E-1; F2AD[14] = 4.4117692E-1; F2AD[15] = 4.8150305E-1; F2AD[16] = 5.1897375E-1; F2AD[17] = 5.5368396E-1; F2AD[18] = 5.8577199E-1; F2AD[19] = 6.1539864E-1; F2AD[20] = 6.4273362E-1; F2AD[21] = 6.6794694E-1; F2AD[22] = 6.9120359E-1; F2AD[23] = 7.126605E-1; F2AD[24] = 7.3246483E-1; F2AD[25] = 7.507533E-1; F2AD[26] = 7.6765207E-1; F2AD[27] = 7.8327703E-1; F2AD[28] = 7.9773426E-1; F2AD[29] = 8.1112067E-1; F2AD[30] = 8.2352466E-1; F2AD[31] = 8.3502676E-1; F2AD[32] = 8.4570037E-1; F2AD[33] = 8.5561231E-1; F2AD[34] = 8.6482346E-1; F2AD[35] = 8.7338931E-1; F2AD[36] = 8.8136046E-1; F2AD[37] = 8.8878306E-1; F2AD[38] = 8.9569925E-1; F2AD[39] = 9.0214757E-1; F2AD[40] = 9.081653E-1; F2AD[41] = 9.1378043E-1; F2AD[42] = 9.1902284E-1; F2AD[43] = 9.2392345E-1; F2AD[44] = 9.2850516E-1; F2AD[45] = 9.3279084E-1; F2AD[46] = 9.3680149E-1; F2AD[47] = 9.4055647E-1; F2AD[48] = 9.440736E-1; F2AD[49] = 9.4736933E-1; F2AD[50] = 9.5045883E-1; F2AD[51] = 9.5335611E-1; F2AD[52] = 9.5607414E-1; F2AD[53] = 9.586249E-1; F2AD[54] = 9.6101951E-1; F2AD[55] = 9.6326825E-1; F2AD[56] = 9.6538067E-1; F2AD[57] = 9.6736563E-1; F2AD[58] = 9.6923135E-1; F2AD[59] = 9.7098548E-1; F2AD[60] = 9.7263514E-1; F2AD[61] = 9.7418694E-1; F2AD[62] = 9.7564704E-1; F2AD[63] = 9.7702119E-1; F2AD[64] = 9.7831473E-1; F2AD[65] = 9.7953267E-1; F2AD[66] = 9.8067966E-1; F2AD[67] = 9.8176005E-1; F2AD[68] = 9.827779E-1; F2AD[69] = 9.8373702E-1; F2AD[70] = 9.8464096E-1; F2AD[71] = 9.8549304E-1; F2AD[72] = 9.8629637E-1; F2AD[73] = 9.8705386E-1; F2AD[74] = 9.8776824E-1; F2AD[75] = 9.8844206E-1; F2AD[76] = 9.8907773E-1; F2AD[77] = 9.8967747E-1; F2AD[78] = 9.9024341E-1; F2AD[79] = 9.9077752E-1; F2AD[80] = 9.9128164E-1; F2AD[81] = 9.9175753E-1; F2AD[82] = 9.9220682E-1; F2AD[83] = 9.9263105E-1; F2AD[84] = 9.9303165E-1; F2AD[85] = 9.9340998E-1; F2AD[86] = 9.9376733E-1; F2AD[87] = 9.9410488E-1; F2AD[88] = 9.9442377E-1; F2AD[89] = 9.9472506E-1; F2AD[90] = 9.9500974E-1; F2AD[91] = 9.9527876E-1; F2AD[92] = 9.95533E-1; F2AD[93] = 9.9577329E-1; F2AD[94] = 9.9600042E-1; F2AD[95] = 9.9621513E-1; F2AD[96] = 9.964181E-1; F2AD[97] = 0.99661; F2AD[98] = 9.9679145E-1; F2AD[99] = 9.9696303E-1; F2AD[100] = 9.9712528E-1; F2AD[101] = 9.9727872E-1; F2AD[102] = 9.9742384E-1; CoAD[0] = 0.0; CoAD[1] = 0.0; CoAD[2] = 0.0; CoAD[3] = 0.0; CoAD[4] = 0.0; CoAD[5] = -1.87E-3; CoAD[6] = 0.00898; CoAD[7] = 0.0209; CoAD[8] = 0.03087; CoAD[9] = 0.0377; CoAD[10] = 0.0414; CoAD[11] = 0.04386; CoAD[12] = 0.043; CoAD[13] = 0.0419; CoAD[14] = 0.0403; CoAD[15] = 0.038; CoAD[16] = 3.54804E-2; CoAD[17] = 0.032; CoAD[18] = 0.0293; CoAD[19] = 2.61949E-2; CoAD[20] = 0.0228; CoAD[21] = 0.0192; CoAD[22] = 1.59865E-2; CoAD[23] = 0.0129; CoAD[24] = 0.0107; CoAD[25] = 8.2464E-3; CoAD[26] = 0.00611; CoAD[27] = 0.00363; CoAD[28] = 1.32272E-3; CoAD[29] = -5.87E-4; CoAD[30] = -2.75E-3; CoAD[31] = -3.95248E-3; CoAD[32] = -5.34E-3; CoAD[33] = -6.892E-3; CoAD[34] = -8.10208E-3; CoAD[35] = -8.93E-3; CoAD[36] = -9.552E-3; CoAD[37] = -1.04605E-2; CoAD[38] = -0.0112; CoAD[39] = -1.175E-2; CoAD[40] = -1.20216E-2; CoAD[41] = -0.0124; CoAD[42] = -1.253E-2; CoAD[43] = -1.27076E-2; CoAD[44] = -0.0129; CoAD[45] = -1.267E-2; CoAD[46] = -1.22015E-2; CoAD[47] = -0.0122; CoAD[48] = -1.186E-2; CoAD[49] = -1.17218E-2; CoAD[50] = -0.0114; CoAD[51] = -1.113E-2; CoAD[52] = -1.08459E-2; CoAD[53] = -0.0104; CoAD[54] = -9.93E-3; CoAD[55] = -9.5252E-3; CoAD[56] = -9.24E-3; CoAD[57] = -9.16E-3; CoAD[58] = -8.8004E-3; CoAD[59] = -8.63E-3; CoAD[60] = -8.336E-3; CoAD[61] = -8.10512E-3; CoAD[62] = -7.94E-3; CoAD[63] = -7.71E-3; CoAD[64] = -7.55064E-3; CoAD[65] = -7.25E-3; CoAD[66] = -7.11E-3; CoAD[67] = -6.834E-3; CoAD[68] = -0.0065; CoAD[69] = -6.28E-3; CoAD[70] = -6.11008E-3; CoAD[71] = -5.86E-3; CoAD[72] = -5.673E-3; CoAD[73] = -5.35008E-3; CoAD[74] = -5.11E-3; CoAD[75] = -4.786E-3; CoAD[76] = -4.59144E-3; CoAD[77] = -4.38E-3; CoAD[78] = -4.15E-3; CoAD[79] = -4.07696E-3; CoAD[80] = -3.93E-3; CoAD[81] = -3.83E-3; CoAD[82] = -3.74656E-3; CoAD[83] = -3.49E-3; CoAD[84] = -3.33E-3; CoAD[85] = -3.20064E-3; CoAD[86] = -3.09E-3; CoAD[87] = -2.93E-3; CoAD[88] = -2.78136E-3; CoAD[89] = -2.72E-3; CoAD[90] = -2.66E-3; CoAD[91] = -2.56208E-3; CoAD[92] = -2.43E-3; CoAD[93] = -2.28E-3; CoAD[94] = -2.13536E-3; CoAD[95] = -2.083E-3; CoAD[96] = -1.94E-3; CoAD[97] = -1.82E-3; CoAD[98] = -1.77E-3; CoAD[99] = -1.72E-3; CoAD[100] = -1.71104E-3; CoAD[101] = -1.741E-3; CoAD[102] = -0.0016; } private AndersonDarling() { throw new AssertionError(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy