All Downloads are FREE. Search and download functionalities are using the official Maven repository.

math.stats.distribution.fit.KolmogorovSmirnovP Maven / Gradle / Ivy

The newest version!
/*
 * Class:        KolmogorovSmirnovPlusDist
 * Description:  Kolmogorov-Smirnov+ distribution
 * Environment:  Java
 * Software:     SSJ 
 * Copyright (C) 2001  Pierre L'Ecuyer and Universite de Montreal
 * Organization: DIRO, Universite de Montreal
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package math.stats.distribution.fit;

import math.Arithmetic;
import math.FastMath;

/**
 * Methods for the *Kolmogorov?Smirnov+* distribution of the
 * {@code Kolmogorov?Smirnov} test statistic {@code D_n^+} given an ordered
 * sample of {@code n} independent uniforms {@code U_i} over {@code (0,1)}.
 * 

* https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test */ final class KolmogorovSmirnovP { private static final double EPSILON = 1.0e-12; /** * Computes the complementary distribution function * bar(F)n(x) with parameter {@code n}. */ static double barF(int n, double x) { if (n <= 0) { throw new IllegalArgumentException("n <= 0 : " + n); } if (x <= 0.0) { return 1.0; } if ((x >= 1.0) || (n * x * x >= 365.0)) { return 0.0; } if (n == 1) { return 1.0 - x; } // the alternating series is stable and fast for n*x very small // (frontier: alternating series) if (n * x <= 6.5) { return 1.0 - cdf(n, x); } // (frontier: asymptotic) if (n >= 200000) { return kolmoSmirnovPlusBarAsymp(n, x); } // (frontier: non-alternating series) if ((n <= 4000) || (n * x * x > 1.0)) { return kolmoSmirnovPlusBarUpper(n, x); } return kolmoSmirnovPlusBarAsymp(n, x); } /** * Computes the *Kolmogorov?Smirnov+* distribution function {@code F_n(x)} * with parameter {@code n}. * The relative error on * {@code F_n(x) = P[D_n^+ <= x]} is always less than {@code 10^-5}. * * @param n * @param x * @return value of the distribution function {@code F_n(x)} */ static double cdf(int n, double x) { if (n <= 0) { throw new IllegalArgumentException("n <= 0 : " + n); } if (x <= 0.0) { return 0.0; } if ((x >= 1.0) || (n * x * x >= 25.0)) { return 1.0; } if (n == 1) { return x; } double q; double term; double sum = 0.0; double logCom = Math.log((double) n); // -------------------------------------------------------------- // the alternating series is stable and fast for n*x very small // -------------------------------------------------------------- // (frontier: alternating series) if (n * x <= 6.5) { int jmax = (int) (n * x); int sign = -1; for (int j = 1; j <= jmax; j++) { double jreal = j; double njreal = n - j; q = jreal / n - x; // we must avoid log(0.0) for j = jmax and n*x near an integer if (-q > Double.MIN_NORMAL) { term = logCom + jreal * Math.log(-q) + (njreal - 1.0) * FastMath.log1p(-q); sum += sign * FastMath.exp(term); } sign = -sign; logCom += Math.log(njreal / (j + 1)); } // add the term j = 0 sum += FastMath.exp((n - 1) * FastMath.log1p(x)); return sum * x; } // ----------------------------------------------------------- // For nx > NxParam (= 6.5), we use the other exact series for small // n, and the asymptotic form for n larger than NPARAM (= 4000) // ----------------------------------------------------------- // (frontier: non-alternating series) if (n <= 4000) { int jmax = (int) (n * (1.0 - x)); if (1.0 - x - (double) jmax / n <= 0.0) { --jmax; } for (int j = 1; j <= jmax; j++) { double jreal = j; double njreal = n - j; q = jreal / n + x; term = logCom + (jreal - 1.0) * Math.log(q) + njreal * FastMath.log1p(-q); sum += FastMath.exp(term); logCom += Math.log(njreal / (jreal + 1.0)); } sum *= x; // add the term j = 0; avoid log(0.0) if (1.0 > x) { sum += FastMath.exp(n * FastMath.log1p(-x)); } return 1.0 - sum; } // -------------------------- // Use an asymptotic formula // -------------------------- term = 2.0 / 3.0; q = x * x * n; sum = 1.0 - FastMath.exp(-2.0 * q) * (1.0 - term * x * (1.0 - x * (1.0 - term * q) - term / n * (0.2 - 19.0 / 15.0 * q + term * q * q))); return sum; } static double kolmoSmirnovPlusBarUpper(int n, double x) { /* * Compute the probability of the complementary KS+ distribution in the * upper tail using Smirnov's stable formula */ if (n > 200000) { return kolmoSmirnovPlusBarAsymp(n, x); } int jmax = (int) (n * (1.0 - x)); // Avoid log(0) for j = jmax and q ~ 1.0 if ((1.0 - x - (double) jmax / n) <= 0.0) { jmax--; } final int jdiv = (n > 3000) ? 2 : 3; int j = jmax / jdiv + 1; double logCom = Arithmetic.logFactorial(n) - Arithmetic.logFactorial(j) - Arithmetic.logFactorial(n - j); final double LOGJM = logCom; double sum = 0.0; while (j <= jmax) { double q = (double) j / n + x; double term = logCom + (j - 1) * Math.log(q) + (n - j) * FastMath.log1p(-q); double t = FastMath.exp(term); sum += t; logCom += Math.log((double) (n - j) / (j + 1)); if (t <= sum * EPSILON) { break; } j++; } j = jmax / jdiv; logCom = LOGJM + Math.log((double) (j + 1) / (n - j)); while (j > 0) { double q = (double) j / n + x; double term = logCom + (j - 1) * Math.log(q) + (n - j) * FastMath.log1p(-q); double t = FastMath.exp(term); sum += t; logCom += Math.log((double) j / (n - j + 1)); if (t <= sum * EPSILON) { break; } j--; } sum *= x; // add the term j = 0 sum += FastMath.exp(n * FastMath.log1p(-x)); return sum; } private static double kolmoSmirnovPlusBarAsymp(int n, double x) { /* * Compute the probability of the complementary KS+ distribution using * an asymptotic formula */ double t = (6.0 * n * x + 1); double z = t * t / (18.0 * n); double v = 1.0 - (2.0 * z * z - 4.0 * z - 1.0) / (18.0 * n); if (v <= 0.0) { return 0.0; } v = v * FastMath.exp(-z); if (v >= 1.0) { return 1.0; } return v; } private KolmogorovSmirnovP() { throw new AssertionError(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy