no.uib.cipr.matrix.AbstractSymmPackMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mt-java Show documentation
Show all versions of mt-java Show documentation
Matrix data structures, linear solvers, least squares methods, eigenvalue,
and singular value decompositions. For larger random dense matrices (above ~ 350 x 350)
matrix-matrix multiplication C = A.B is about 50% faster than MTJ.
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix;
import com.github.fommil.netlib.BLAS;
import com.github.fommil.netlib.LAPACK;
import org.netlib.util.intW;
/**
* Partial implementation of a symmetrical, packed matrix
*/
abstract class AbstractSymmPackMatrix extends AbstractPackMatrix {
/**
* Which part of the matrix which is stored
*/
private UpLo uplo;
/**
* Constructor for AbstractSymmPackMatrix
*/
AbstractSymmPackMatrix(int n, UpLo uplo) {
super(n);
this.uplo = uplo;
}
/**
* Constructor for AbstractSymmPackMatrix
*/
AbstractSymmPackMatrix(Matrix A, UpLo uplo) {
this(A, true, uplo);
}
/**
* Constructor for AbstractSymmPackMatrix
*/
AbstractSymmPackMatrix(Matrix A, boolean deep, UpLo uplo) {
super(A, deep);
this.uplo = uplo;
}
@Override
public Vector multAdd(double alpha, Vector x, Vector y) {
if (!(x instanceof DenseVector) || !(y instanceof DenseVector))
return super.multAdd(alpha, x, y);
checkMultAdd(x, y);
double[] xd = ((DenseVector) x).getData(), yd = ((DenseVector) y)
.getData();
BLAS.getInstance().dspmv(uplo.netlib(), numRows, alpha, data, xd, 1, 1,
yd, 1);
return y;
}
@Override
public Vector transMultAdd(double alpha, Vector x, Vector y) {
return multAdd(alpha, x, y);
}
@Override
public Matrix rank1(double alpha, Vector x, Vector y) {
if (x != y)
throw new IllegalArgumentException("x != y");
if (!(x instanceof DenseVector))
return super.rank1(alpha, x, y);
checkRank1(x, y);
double[] xd = ((DenseVector) x).getData();
BLAS.getInstance().dspr(uplo.netlib(), numRows, alpha, xd, 1, data);
return this;
}
@Override
public Matrix rank2(double alpha, Vector x, Vector y) {
if (!(x instanceof DenseVector) || !(y instanceof DenseVector))
return super.rank2(alpha, x, y);
checkRank2(x, y);
double[] xd = ((DenseVector) x).getData(), yd = ((DenseVector) y)
.getData();
BLAS.getInstance().dspr2(uplo.netlib(), numRows, alpha, xd, 1, yd, 1,
data);
return this;
}
@Override
public Matrix solve(Matrix B, Matrix X) {
if (!(X instanceof DenseMatrix))
throw new UnsupportedOperationException("X must be a DenseMatrix");
checkSolve(B, X);
double[] Xd = ((DenseMatrix) X).getData();
X.set(B);
int[] ipiv = new int[numRows];
intW info = new intW(0);
LAPACK.getInstance().dspsv(uplo.netlib(), numRows, X.numColumns(),
data.clone(), ipiv, Xd, Matrices.ld(numRows), info);
if (info.val > 0)
throw new MatrixSingularException();
else if (info.val < 0)
throw new IllegalArgumentException();
return X;
}
@Override
public Vector solve(Vector b, Vector x) {
DenseMatrix B = new DenseMatrix(b, false), X = new DenseMatrix(x, false);
solve(B, X);
return x;
}
@Override
public Matrix transSolve(Matrix B, Matrix X) {
return solve(B, X);
}
@Override
public Vector transSolve(Vector b, Vector x) {
return solve(b, x);
}
Matrix SPDsolve(Matrix B, Matrix X) {
if (!(X instanceof DenseMatrix))
throw new UnsupportedOperationException("X must be a DenseMatrix");
checkSolve(B, X);
double[] Xd = ((DenseMatrix) X).getData();
X.set(B);
intW info = new intW(0);
LAPACK.getInstance().dppsv(uplo.netlib(), numRows, X.numColumns(),
data.clone(), Xd, Matrices.ld(numRows), info);
if (info.val > 0)
throw new MatrixNotSPDException();
else if (info.val < 0)
throw new IllegalArgumentException();
return X;
}
@Override
public Matrix transpose() {
return this;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy