no.uib.cipr.matrix.DenseLU Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mt-java Show documentation
Show all versions of mt-java Show documentation
Matrix data structures, linear solvers, least squares methods, eigenvalue,
and singular value decompositions. For larger random dense matrices (above ~ 350 x 350)
matrix-matrix multiplication C = A.B is about 50% faster than MTJ.
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix;
import com.github.fommil.netlib.LAPACK;
import no.uib.cipr.matrix.Matrix.Norm;
import org.netlib.util.doubleW;
import org.netlib.util.intW;
/**
* Dense Partial Pivot LU decomposition: {@code A = P * L * U}.
*/
public class DenseLU {
/**
* Holds the LU factors
*/
private DenseMatrix LU;
/**
* Row pivotations
*/
private int[] piv;
/**
* True if the matrix was singular
*/
private boolean singular;
/**
* Constructor for DenseLU
*
* @param m
* Number of rows
* @param n
* Number of columns
*/
public DenseLU(int m, int n) {
LU = new DenseMatrix(m, n);
piv = new int[Math.min(m, n)];
}
/**
* Creates an LU decomposition of the given matrix
*
* @param A
* Matrix to decompose. Not modified
* @return The current decomposition
*/
public static DenseLU factorize(Matrix A) {
return new DenseLU(A.numRows(), A.numColumns()).factor(new DenseMatrix(
A));
}
/**
* Creates an LU decomposition of the given matrix
*
* @param A
* Matrix to decompose. Overwritten with the decomposition
* @return The current decomposition
*/
public DenseLU factor(DenseMatrix A) {
singular = false;
intW info = new intW(0);
LAPACK.getInstance().dgetrf(A.numRows(), A.numColumns(), A.getData(),
Matrices.ld(A.numRows()), piv, info);
if (info.val > 0)
singular = true;
else if (info.val < 0)
throw new IllegalArgumentException();
LU.set(A);
return this;
}
/**
* Returns the permutation matrix.
*/
public PermutationMatrix getP() {
PermutationMatrix perm = PermutationMatrix.fromPartialPivots(piv);
perm.transpose();
return perm;
}
/**
* Returns the lower triangular factor
*/
public UnitLowerTriangDenseMatrix getL() {
return new UnitLowerTriangDenseMatrix(getLU(), false);
}
/**
* Returns the upper triangular factor
*/
public UpperTriangDenseMatrix getU() {
return new UpperTriangDenseMatrix(getLU(), false);
}
/**
* Returns the decomposition matrix
*/
protected DenseMatrix getLU() {
return LU;
}
/**
* Computes the reciprocal condition number, using either the infinity norm
* of the 1 norm.
*
* @param A
* The matrix this is a decomposition of
* @param norm
* Either Norm.One
or Norm.Infinity
* @return The reciprocal condition number. Values close to unity indicate a
* well-conditioned system, while numbers close to zero do not.
*/
public double rcond(Matrix A, Norm norm) {
if (norm != Norm.One && norm != Norm.Infinity)
throw new IllegalArgumentException(
"Only the 1 or the Infinity norms are supported");
double anorm = A.norm(norm);
int n = A.numRows();
intW info = new intW(0);
doubleW rcond = new doubleW(0);
LAPACK.getInstance().dgecon(norm.netlib(), n, LU.getData(),
Matrices.ld(n), anorm, rcond, new double[4 * n], new int[n],
info);
if (info.val < 0)
throw new IllegalArgumentException();
return rcond.val;
}
/**
* Returns the row pivots
*/
public int[] getPivots() {
return piv;
}
/**
* Checks for singularity
*/
public boolean isSingular() {
return singular;
}
/**
* Computes A\B
, overwriting B
*/
public DenseMatrix solve(DenseMatrix B) throws MatrixSingularException {
return solve(B, Transpose.NoTranspose);
}
/**
* Computes AT\B
, overwriting B
*/
public DenseMatrix transSolve(DenseMatrix B) throws MatrixSingularException {
return solve(B, Transpose.Transpose);
}
private DenseMatrix solve(DenseMatrix B, Transpose trans)
throws MatrixSingularException {
if (singular)
throw new MatrixSingularException();
if (B.numRows() != LU.numRows())
throw new IllegalArgumentException("B.numRows() != LU.numRows()");
intW info = new intW(0);
LAPACK.getInstance().dgetrs(trans.netlib(), LU.numRows(),
B.numColumns(), LU.getData(), Matrices.ld(LU.numRows()), piv,
B.getData(), Matrices.ld(LU.numRows()), info);
if (info.val < 0)
throw new IllegalArgumentException();
return B;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy