no.uib.cipr.matrix.DenseVector Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mt-java Show documentation
Show all versions of mt-java Show documentation
Matrix data structures, linear solvers, least squares methods, eigenvalue,
and singular value decompositions. For larger random dense matrices (above ~ 350 x 350)
matrix-matrix multiplication C = A.B is about 50% faster than MTJ.
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix;
import java.io.IOException;
import java.io.Serializable;
import java.util.Arrays;
import no.uib.cipr.matrix.io.MatrixVectorReader;
import no.uib.cipr.matrix.io.VectorInfo;
import no.uib.cipr.matrix.io.VectorSize;
import no.uib.cipr.matrix.io.VectorInfo.VectorField;
/**
* Dense vector. Stored by a double[]
array of the same length as
* the vector itself.
*/
public class DenseVector extends AbstractVector implements Serializable {
/** just the private data */
private static final long serialVersionUID = 5358813524094629362L;
/**
* Vector data
*/
private final double[] data;
/**
* Constructor for DenseVector
*
* @param r
* Reader to get vector from
*/
public DenseVector(MatrixVectorReader r) throws IOException {
// Start with a zero-sized vector
super(0);
// Get vector information. Use the header if present, else use a safe
// default
VectorInfo info = null;
if (r.hasInfo())
info = r.readVectorInfo();
else
info = new VectorInfo(true, VectorField.Real);
VectorSize size = r.readVectorSize(info);
// Resize the vector to correct size
this.size = size.size();
data = new double[size.size()];
// Check that the vector is in an acceptable format
if (info.isPattern())
throw new UnsupportedOperationException(
"Pattern vectors are not supported");
if (info.isComplex())
throw new UnsupportedOperationException(
"Complex vectors are not supported");
// Read the entries
if (info.isCoordinate()) {
// Read coordinate data
int nz = size.numEntries();
int[] index = new int[nz];
double[] entry = new double[nz];
r.readCoordinate(index, entry);
// Shift indices from 1-offset to 0-offset
r.add(-1, index);
// Store them
for (int i = 0; i < nz; ++i)
set(index[i], entry[i]);
} else
// info.isArray()
r.readArray(data);
}
/**
* Constructor for DenseVector
*
* @param size
* Size of the vector
*/
public DenseVector(int size) {
super(size);
data = new double[size];
}
/**
* Constructor for DenseVector
*
* @param x
* Copies contents from this vector. A deep copy is made
*/
public DenseVector(Vector x) {
this(x, true);
}
/**
* Constructor for DenseVector
*
* @param x
* Copies contents from this vector
* @param deep
* True for a deep copy. For a shallow copy, x
must
* be a DenseVector
*/
public DenseVector(Vector x, boolean deep) {
super(x);
if (deep) {
data = new double[size];
set(x);
} else
data = ((DenseVector) x).getData();
}
/**
* Constructor for DenseVector
*
* @param x
* Copies contents from this array
* @param deep
* True for a deep copy. For a shallow copy, x
is
* aliased with the internal storage
*/
public DenseVector(double[] x, boolean deep) {
super(x.length);
if (deep)
data = x.clone();
else
data = x;
}
/**
* Constructor for DenseVector
*
* @param x
* Copies contents from this array in a deep copy
*/
public DenseVector(double[] x) {
this(x, true);
}
@Override
public void set(int index, double value) {
check(index);
data[index] = value;
}
@Override
public void add(int index, double value) {
check(index);
data[index] += value;
}
@Override
public double get(int index) {
check(index);
return data[index];
}
@Override
public DenseVector copy() {
return new DenseVector(this);
}
@Override
public DenseVector zero() {
Arrays.fill(data, 0);
return this;
}
@Override
public DenseVector scale(double alpha) {
for (int i = 0; i < size; ++i)
data[i] *= alpha;
return this;
}
@Override
public Vector set(Vector y) {
if (!(y instanceof DenseVector))
return super.set(y);
checkSize(y);
double[] yd = ((DenseVector) y).getData();
System.arraycopy(yd, 0, data, 0, size);
return this;
}
@Override
public Vector set(double alpha, Vector y) {
if (!(y instanceof DenseVector))
return super.set(alpha, y);
checkSize(y);
if (alpha == 0)
return zero();
double[] yd = ((DenseVector) y).getData();
for (int i = 0; i < size; ++i)
data[i] = alpha * yd[i];
return this;
}
@Override
public Vector add(Vector y) {
if (!(y instanceof DenseVector))
return super.add(y);
checkSize(y);
double[] yd = ((DenseVector) y).getData();
for (int i = 0; i < size; i++)
data[i] += yd[i];
return this;
}
@Override
public Vector add(double alpha, Vector y) {
if (!(y instanceof DenseVector))
return super.add(alpha, y);
checkSize(y);
if (alpha == 0)
return this;
double[] yd = ((DenseVector) y).getData();
for (int i = 0; i < size; i++)
data[i] += alpha * yd[i];
return this;
}
@Override
public double dot(Vector y) {
if (!(y instanceof DenseVector))
return super.dot(y);
checkSize(y);
double[] yd = ((DenseVector) y).getData();
double dot = 0.;
for (int i = 0; i < size; ++i)
dot += data[i] * yd[i];
return dot;
}
@Override
protected double norm1() {
double sum = 0;
for (int i = 0; i < size; ++i)
sum += Math.abs(data[i]);
return sum;
}
@Override
protected double norm2() {
double norm = 0;
for (int i = 0; i < size; ++i)
norm += data[i] * data[i];
return Math.sqrt(norm);
}
@Override
protected double norm2_robust() {
double scale = 0, ssq = 1;
for (int i = 0; i < size; ++i)
if (data[i] != 0) {
double absxi = Math.abs(data[i]);
if (scale < absxi) {
ssq = 1 + ssq * (scale / absxi) * (scale / absxi);
scale = absxi;
} else
ssq += (absxi / scale) * (absxi / scale);
}
return scale * Math.sqrt(ssq);
}
@Override
protected double normInf() {
double max = 0;
for (int i = 0; i < size; ++i)
max = Math.max(Math.abs(data[i]), max);
return max;
}
/**
* Returns the internal vector contents. The array indices correspond to the
* vector indices
*/
public double[] getData() {
return data;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy