All Downloads are FREE. Search and download functionalities are using the official Maven repository.

no.uib.cipr.matrix.LowerTriangPackMatrix Maven / Gradle / Ivy

Go to download

Matrix data structures, linear solvers, least squares methods, eigenvalue, and singular value decompositions. For larger random dense matrices (above ~ 350 x 350) matrix-matrix multiplication C = A.B is about 50% faster than MTJ.

There is a newer version: 1.1.0
Show newest version
/*
 * Copyright (C) 2003-2006 Bjørn-Ove Heimsund
 * 
 * This file is part of MTJ.
 * 
 * This library is free software; you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as published by the
 * Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * This library is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
 * for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

package no.uib.cipr.matrix;

/**
 * Lower triangular packed matrix. In contrast with
 * {@link no.uib.cipr.matrix.LowerTriangDenseMatrix LowerTriangDenseMatrix},
 * this matrix exploits the sparsity by only storing about half the matrix. As
 * such, the triangular matrix
 * 

*

* * * * * * * * * * * * * * * * * * * * * * * * *
a11   
a21a22  
a31a32a33 
a41a42a43a44
*

*

* is packed as follows: *

*

*

* * * * * * * * * * * * *
a11a21a31a41a22a32a42a33a43a44
*

*/ public class LowerTriangPackMatrix extends AbstractTriangPackMatrix { /** * Constructor for LowerTriangPackMatrix * * @param n * Size of the matrix. Since the matrix must be square, this * equals both the number of rows and columns */ public LowerTriangPackMatrix(int n) { super(n, UpLo.Lower, Diag.NonUnit); } /** * Constructor for LowerTriangPackMatrix * * @param n * Size of the matrix. Since the matrix must be square, this * equals both the number of rows and columns */ LowerTriangPackMatrix(int n, Diag diag) { super(n, UpLo.Lower, diag); } /** * Constructor for LowerTriangPackMatrix * * @param A * Matrix to copy contents from. Only the entries of the relevant * part are copied */ public LowerTriangPackMatrix(Matrix A) { this(A, true); } /** * Constructor for LowerTriangPackMatrix * * @param A * Matrix to copy contents from. Only the entries of the relevant * part are copied * @param deep * True if the copy is deep, else false (giving a shallow copy). * For shallow copies, A must be a packed matrix */ public LowerTriangPackMatrix(Matrix A, boolean deep) { super(A, deep, UpLo.Lower, Diag.NonUnit); } /** * Constructor for LowerTriangPackMatrix * * @param A * Matrix to copy contents from. Only the entries of the relevant * part are copied * @param deep * True if the copy is deep, else false (giving a shallow copy). * For shallow copies, A must be a packed matrix */ LowerTriangPackMatrix(Matrix A, boolean deep, Diag diag) { super(A, deep, UpLo.Lower, diag); } @Override public void add(int row, int column, double value) { if (column > row) throw new IllegalArgumentException("column > row"); data[getIndex(row, column)] += value; } @Override public void set(int row, int column, double value) { if (column > row) throw new IllegalArgumentException("column > row"); data[getIndex(row, column)] = value; } @Override public double get(int row, int column) { if (column > row) return 0; return data[getIndex(row, column)]; } /** * Checks the row and column indices, and returns the linear data index */ int getIndex(int row, int column) { check(row, column); return row + (2 * n - (column + 1)) * column / 2; } @Override void copy(Matrix A) { for (MatrixEntry e : A) if (e.row() >= e.column()) set(e.row(), e.column(), e.get()); } @Override public LowerTriangPackMatrix copy() { return new LowerTriangPackMatrix(this); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy