All Downloads are FREE. Search and download functionalities are using the official Maven repository.

no.uib.cipr.matrix.QRP Maven / Gradle / Ivy

Go to download

Matrix data structures, linear solvers, least squares methods, eigenvalue, and singular value decompositions. For larger random dense matrices (above ~ 350 x 350) matrix-matrix multiplication C = A.B is about 50% faster than MTJ.

There is a newer version: 1.1.0
Show newest version
/*
 * Copyright (C) 2006 Rafael de Pelegrini Soares
 * 
 * MTJ additions.
 * 
 * This library is free software; you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as published by the
 * Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * This library is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
 * for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */
package no.uib.cipr.matrix;

import com.github.fommil.netlib.LAPACK;
import org.netlib.util.intW;

/**
 * Computes QR decompositions with column pivoting:
 * 
 * {@code A*P = Q*R} where
 * 
 * {@code A(m,n)}, {@code Q(m,m)}, and {@code R(m,n)}, more generally:
 * 
 * {@code A*P = [Q1 Q2] * [R11, R12; 0 R22]} and {@code R22} elements are
 * negligible.
 * 
 */
public class QRP {

    /** Pivoting vector */
    int[] jpvt;
    /**
     * Scales for the reflectors
     */
    final double[] tau;
    /**
     * Factorisation sizes
     */
    final int m, n, k;
    /** The factored matrix rank */
    int rank;
    /**
     * Work array
     */
    double[] work;
    /**
     * The factored matrix
     */
    final DenseMatrix Afact;
    /**
     * The orthogonal matrix
     */
    final DenseMatrix Q;
    /**
     * The general upper triangular matrix.
     */
    final DenseMatrix R;

    /**
     * Constructs an empty QR decomposition.
     * 
     * @param m
     *            the number of rows.
     * @param n
     *            the number of columns.
     */
    public QRP(int m, int n) {
        this.m = m;
        this.n = n;
        this.k = Math.min(m, n);
        this.rank = 0;
        jpvt = new int[n];
        tau = new double[k];

        Q = new DenseMatrix(m, m);
        R = new DenseMatrix(m, n);
        Afact = new DenseMatrix(m, Math.max(m, n));

        int lwork1, lwork2;
        intW info = new intW(0);
        double[] dummy = new double[1];
        double[] ret = new double[1];

        LAPACK lapack = LAPACK.getInstance();

        // Query optimal workspace. First for computing the factorization
        lapack.dgeqrf(m, n, dummy, Matrices.ld(m), dummy, ret, -1, info);
        lwork1 = (info.val != 0) ? n : (int) ret[0];

        // Workspace needed for generating an explicit orthogonal matrix
        lapack.dorgqr(m, m, k, dummy, Matrices.ld(m), dummy, ret, -1, info);
        lwork2 = (info.val != 0) ? n : (int) ret[0];

        work = new double[Math.max(lwork1, lwork2)];
    }

    /**
     * Convenience method to compute a QR decomposition.
     * 
     * @param A
     *            the matrix to decompose (not modified)
     * @return Newly allocated decomposition
     */
    public static QRP factorize(Matrix A) {
        return new QRP(A.numRows(), A.numColumns()).factor(A);
    }

    /**
     * Executes a QR factorization for the given matrix.
     * 
     * @param A
     *            the matrix to be factored (not modified)
     * @return the factorization object
     */
    public QRP factor(Matrix A) {
        if (Q.numRows() != A.numRows())
            throw new IllegalArgumentException("Q.numRows() != A.numRows()");
        else if (R.numColumns() != A.numColumns())
            throw new IllegalArgumentException(
                    "R.numColumns() != A.numColumns()");

        // copy A values in Afact
        Afact.zero();
        for (MatrixEntry e : A) {
            Afact.set(e.row(), e.column(), e.get());
        }

        intW info = new intW(0);
        LAPACK lapack = LAPACK.getInstance();

        // the dgeqp3 work array is a different size than the dorgqr
        // one (I'm not entirely convinced that we should be
        // persisting the work arrays as fields).
        double[] factorWorkOptimalSize = {0.0};
        double[] factorWork;

        lapack.dgeqp3(m, n, Afact.getData(), Matrices.ld(m), jpvt, tau,
                factorWorkOptimalSize, -1, info);
        factorWork = new double[(int) factorWorkOptimalSize[0]];

        /*
         * Calculate factorisation
         */
        lapack.dgeqp3(m, n, Afact.getData(), Matrices.ld(m), jpvt, tau,
                factorWork, factorWork.length, info);

        if (info.val < 0) {
            throw new IllegalArgumentException("DGEQP3 was " + info.val);
        }

        /*
         * Get R from Afact
         */
        R.zero();
        for (MatrixEntry e : Afact) {
            if (e.row() <= e.column() && e.column() < R.numColumns()) {
                R.set(e.row(), e.column(), e.get());
            }
        }

        /*
         * Calculate the rank based on a precision EPS
         */
        final double EPS = 1e-12;
        for (rank = 0; rank < k; rank++) {
            if (Math.abs(R.get(rank, rank)) < EPS)
                break;
        }

        /*
         * Explicit the orthogonal matrix
         */
        lapack.dorgqr(m, m, k, Afact.getData(), Matrices.ld(m), tau, work,
                work.length, info);
        for (MatrixEntry e : Afact) {
            if (e.column() < Q.numColumns())
                Q.set(e.row(), e.column(), e.get());
        }

        if (info.val < 0)
            throw new IllegalArgumentException();

        // Adjust the permutation to zero offset
        for (int i = 0; i < jpvt.length; i++) {
            --jpvt[i];
        }

        return this;
    }

    /**
     * Returns the upper triangular factor.
     */
    public DenseMatrix getR() {
        return R;
    }

    /**
     * Returns the orthogonal matrix.
     */
    public DenseMatrix getQ() {
        return Q;
    }

    /**
     * Returns the column pivoting vector. This function is cheaper than
     * {@link #getP()}.
     */
    public int[] getPVector() {
        return jpvt;
    }

    /**
     * Returns the column pivoting matrix. This function allocates a new Matrix
     * to be returned, a more cheap option is to use {@link #getPVector()}.
     */
    public Matrix getP() {
        Matrix P = new DenseMatrix(jpvt.length, jpvt.length);
        for (int i = 0; i < jpvt.length; i++) {
            P.set(jpvt[i], i, 1);
        }
        return P;
    }

    /**
     * Returns the rank of the factored matrix.
     */
    public int getRank() {
        return rank;
    }
}





© 2015 - 2024 Weber Informatics LLC | Privacy Policy