no.uib.cipr.matrix.sparse.AbstractIterationMonitor Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mt-java Show documentation
Show all versions of mt-java Show documentation
Matrix data structures, linear solvers, least squares methods, eigenvalue,
and singular value decompositions. For larger random dense matrices (above ~ 350 x 350)
matrix-matrix multiplication C = A.B is about 50% faster than MTJ.
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix.sparse;
import no.uib.cipr.matrix.Vector;
import no.uib.cipr.matrix.Vector.Norm;
/**
* Partial implementation of an iteration reporter.
*/
public abstract class AbstractIterationMonitor implements IterationMonitor {
/**
* Iteration number
*/
protected int iter;
/**
* Vector-norm
*/
protected Norm normType;
/**
* Iteration reporter
*/
protected IterationReporter reporter;
/**
* Current residual
*/
protected double residual;
/**
* Constructor for AbstractIterationMonitor. Default norm is the 2-norm with
* no iteration reporting.
*/
public AbstractIterationMonitor() {
normType = Norm.Two;
reporter = new NoIterationReporter();
}
public void setFirst() {
iter = 0;
}
public boolean isFirst() {
return iter == 0;
}
public void next() {
iter++;
}
public int iterations() {
return iter;
}
public boolean converged(Vector r, Vector x)
throws IterativeSolverNotConvergedException {
return converged(r.norm(normType), x);
}
public boolean converged(double r, Vector x)
throws IterativeSolverNotConvergedException {
reporter.monitor(r, x, iter);
this.residual = r;
return convergedI(r, x);
}
public boolean converged(double r)
throws IterativeSolverNotConvergedException {
reporter.monitor(r, iter);
this.residual = r;
return convergedI(r);
}
protected abstract boolean convergedI(double r, Vector x)
throws IterativeSolverNotConvergedException;
protected abstract boolean convergedI(double r)
throws IterativeSolverNotConvergedException;
public boolean converged(Vector r)
throws IterativeSolverNotConvergedException {
return converged(r.norm(normType));
}
public Norm getNormType() {
return normType;
}
public void setNormType(Norm normType) {
this.normType = normType;
}
public IterationReporter getIterationReporter() {
return reporter;
}
public void setIterationReporter(IterationReporter monitor) {
this.reporter = monitor;
}
public double residual() {
return residual;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy