no.uib.cipr.matrix.sparse.Chebyshev Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mt-java Show documentation
Show all versions of mt-java Show documentation
Matrix data structures, linear solvers, least squares methods, eigenvalue,
and singular value decompositions. For larger random dense matrices (above ~ 350 x 350)
matrix-matrix multiplication C = A.B is about 50% faster than MTJ.
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* Derived from public domain software at http://www.netlib.org/templates
*/
package no.uib.cipr.matrix.sparse;
import no.uib.cipr.matrix.Matrix;
import no.uib.cipr.matrix.Vector;
/**
* Chebyshev solver. Solves the symmetric positive definite linear system
* Ax = b
using the Preconditioned Chebyshev Method. Chebyshev
* requires an accurate estimate on the bounds of the spectrum of the matrix.
*
* @author Templates
*/
public class Chebyshev extends AbstractIterativeSolver {
/**
* Estimates for the eigenvalue of the matrix
*/
private double eigmin, eigmax;
/**
* Vectors for use in the iterative solution process
*/
private Vector p, z, r, q;
/**
* Constructor for Chebyshev. Uses the given vector as template for creating
* scratch vectors. Typically, the solution or the right hand side vector
* can be passed, and the template is not modified. Eigenvalue estimates
* must also be provided.
*
* @param template
* Vector to use as template for the work vectors needed in the
* solution process
* @param eigmin
* Smallest eigenvalue. Must be positive
* @param eigmax
* Largest eigenvalue. Must be positive
*/
public Chebyshev(Vector template, double eigmin, double eigmax) {
p = template.copy();
z = template.copy();
r = template.copy();
q = template.copy();
setEigenvalues(eigmin, eigmax);
}
/**
* Sets the eigenvalue estimates.
*
* @param eigmin
* Smallest eigenvalue. Must be positive
* @param eigmax
* Largest eigenvalue. Must be positive
*/
public void setEigenvalues(double eigmin, double eigmax) {
this.eigmin = eigmin;
this.eigmax = eigmax;
if (eigmin <= 0)
throw new IllegalArgumentException("eigmin <= 0");
if (eigmax <= 0)
throw new IllegalArgumentException("eigmax <= 0");
if (eigmin > eigmax)
throw new IllegalArgumentException("eigmin > eigmax");
}
public Vector solve(Matrix A, Vector b, Vector x)
throws IterativeSolverNotConvergedException {
checkSizes(A, b, x);
double alpha = 0, beta = 0, c = 0, d = 0;
A.multAdd(-1, x, r.set(b));
c = (eigmax - eigmin) / 2.0;
d = (eigmax + eigmin) / 2.0;
for (iter.setFirst(); !iter.converged(r, x); iter.next()) {
M.apply(r, z);
if (iter.isFirst()) {
p.set(z);
alpha = 2.0 / d;
} else {
beta = (alpha * c) / 2.0;
beta *= beta;
alpha = 1.0 / (d - beta);
p.scale(beta).add(z);
}
A.mult(p, q);
x.add(alpha, p);
r.add(-alpha, q);
}
return x;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy