no.uib.cipr.matrix.sparse.DiagonalPreconditioner Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mt-java Show documentation
Show all versions of mt-java Show documentation
Matrix data structures, linear solvers, least squares methods, eigenvalue,
and singular value decompositions. For larger random dense matrices (above ~ 350 x 350)
matrix-matrix multiplication C = A.B is about 50% faster than MTJ.
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix.sparse;
import no.uib.cipr.matrix.DenseVector;
import no.uib.cipr.matrix.Matrix;
import no.uib.cipr.matrix.Vector;
/**
* Diagonal preconditioner. Uses the inverse of the diagonal as preconditioner.
*/
public class DiagonalPreconditioner implements Preconditioner {
/**
* This contains the inverse of the diagonal
*/
private double[] invdiag;
/**
* Constructor for DiagonalPreconditioner
*
* @param n
* Problem size (number of rows)
*/
public DiagonalPreconditioner(int n) {
invdiag = new double[n];
}
public Vector apply(Vector b, Vector x) {
if (!(x instanceof DenseVector) || !(b instanceof DenseVector))
throw new IllegalArgumentException("Vector must be DenseVectors");
double[] xd = ((DenseVector) x).getData();
double[] bd = ((DenseVector) b).getData();
for (int i = 0; i < invdiag.length; ++i)
xd[i] = bd[i] * invdiag[i];
return x;
}
public Vector transApply(Vector b, Vector x) {
return apply(b, x);
}
public void setMatrix(Matrix A) {
if (A.numRows() != invdiag.length)
throw new IllegalArgumentException(
"Matrix size differs from preconditioner size");
for (int i = 0; i < invdiag.length; ++i) {
invdiag[i] = A.get(i, i);
if (invdiag[i] == 0) // Avoid zero-division
throw new RuntimeException("Zero diagonal on row " + (i + 1));
else
invdiag[i] = 1 / invdiag[i];
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy