no.uib.cipr.matrix.sparse.FlexCompRowMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mt-java Show documentation
Show all versions of mt-java Show documentation
Matrix data structures, linear solvers, least squares methods, eigenvalue,
and singular value decompositions. For larger random dense matrices (above ~ 350 x 350)
matrix-matrix multiplication C = A.B is about 50% faster than MTJ.
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix.sparse;
import java.util.Arrays;
import java.util.Iterator;
import no.uib.cipr.matrix.AbstractMatrix;
import no.uib.cipr.matrix.DenseVector;
import no.uib.cipr.matrix.Matrix;
import no.uib.cipr.matrix.MatrixEntry;
import no.uib.cipr.matrix.Vector;
import no.uib.cipr.matrix.VectorEntry;
import no.uib.cipr.matrix.sparse.SuperIterator.SuperIteratorEntry;
/**
* Matrix stored row-wise into sparse vectors.
*/
public class FlexCompRowMatrix extends AbstractMatrix {
/**
* Matrix data
*/
SparseVector[] rowD;
/**
* Constructor for FlexCompRowMatrix.
*
* @param numRows
* Number of rows
* @param numColumns
* Number of column
*/
public FlexCompRowMatrix(int numRows, int numColumns) {
super(numRows, numColumns);
rowD = new SparseVector[numRows];
for (int i = 0; i < numRows; ++i)
rowD[i] = new SparseVector(numColumns);
}
/**
* Constructor for FlexCompRowMatrix.
*
* @param A
* Matrix to copy contents from
* @param deep
* True for a deep copy, false for a reference copy. A reference
* copy can only be made of an FlexCompRowMatrix
*/
public FlexCompRowMatrix(Matrix A, boolean deep) {
super(A);
rowD = new SparseVector[numRows];
if (deep) {
for (int i = 0; i < numRows; ++i)
rowD[i] = new SparseVector(numColumns);
set(A);
} else {
FlexCompRowMatrix Ar = (FlexCompRowMatrix) A;
for (int i = 0; i < numRows; ++i)
rowD[i] = Ar.getRow(i);
}
}
/**
* Constructor for FlexCompRowMatrix.
*
* @param A
* Matrix to copy contents from. The copy will be deep
*/
public FlexCompRowMatrix(Matrix A) {
this(A, true);
}
/**
* Returns the given row.
*/
public SparseVector getRow(int i) {
return rowD[i];
}
/**
* Sets the given row equal the passed vector.
*/
public void setRow(int i, SparseVector x) {
if (x.size() != numColumns)
throw new IllegalArgumentException(
"New row must be of the same size as existing row");
rowD[i] = x;
}
@Override
public Vector multAdd(double alpha, Vector x, Vector y) {
checkMultAdd(x, y);
for (int i = 0; i < numRows; ++i)
y.add(i, alpha * rowD[i].dot(x));
return y;
}
@Override
public Vector transMultAdd(double alpha, Vector x, Vector y) {
if (!(x instanceof DenseVector) || !(y instanceof DenseVector))
return super.transMultAdd(alpha, x, y);
checkTransMultAdd(x, y);
double[] xd = ((DenseVector) x).getData(), yd = ((DenseVector) y)
.getData();
// y = 1/alpha * y
y.scale(1. / alpha);
// y = A'x + y
for (int i = 0; i < numRows; ++i) {
SparseVector v = rowD[i];
int[] index = v.getIndex();
double[] data = v.getData();
int length = v.getUsed();
for (int j = 0; j < length; ++j)
yd[index[j]] += data[j] * xd[i];
}
// y = alpha*y = alpha * A'x + y
return y.scale(alpha);
}
@Override
public void add(int row, int column, double value) {
rowD[row].add(column, value);
}
@Override
public void set(int row, int column, double value) {
rowD[row].set(column, value);
}
@Override
public double get(int row, int column) {
return rowD[row].get(column);
}
@Override
public Iterator iterator() {
return new RowMatrixIterator();
}
@Override
public Matrix copy() {
return new FlexCompRowMatrix(this);
}
@Override
public FlexCompRowMatrix zero() {
for (int i = 0; i < numRows; ++i)
rowD[i].zero();
return this;
}
@Override
public Matrix set(Matrix B) {
if (!(B instanceof FlexCompRowMatrix))
return super.set(B);
checkSize(B);
FlexCompRowMatrix Bc = (FlexCompRowMatrix) B;
for (int i = 0; i < numRows; ++i)
rowD[i].set(Bc.rowD[i]);
return this;
}
/**
* Tries to store the matrix as compactly as possible.
*/
public void compact() {
for (Vector v : rowD)
((SparseVector) v).compact();
}
/**
* Iterator over a matrix stored vector-wise by rows
*/
private final class RowMatrixIterator implements Iterator {
/**
* Iterates over each row vector
*/
private SuperIterator iterator = new SuperIterator(
Arrays.asList(rowD));
/**
* Entry returned
*/
private RowMatrixEntry entry = new RowMatrixEntry();
public boolean hasNext() {
return iterator.hasNext();
}
public MatrixEntry next() {
SuperIteratorEntry se = iterator.next();
entry.update(se.index(), se.get());
return entry;
}
public void remove() {
iterator.remove();
}
}
/**
* Entry of a matrix stored vector-wise by rows
*/
private static final class RowMatrixEntry implements MatrixEntry {
private int row;
private VectorEntry entry;
public void update(int row, VectorEntry entry) {
this.row = row;
this.entry = entry;
}
public int row() {
return row;
}
public int column() {
return entry.index();
}
public double get() {
return entry.get();
}
public void set(double value) {
entry.set(value);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy