no.uib.cipr.matrix.sparse.ICC Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mt-java Show documentation
Show all versions of mt-java Show documentation
Matrix data structures, linear solvers, least squares methods, eigenvalue,
and singular value decompositions. For larger random dense matrices (above ~ 350 x 350)
matrix-matrix multiplication C = A.B is about 50% faster than MTJ.
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix.sparse;
import java.util.Arrays;
import no.uib.cipr.matrix.DenseVector;
import no.uib.cipr.matrix.Matrix;
import no.uib.cipr.matrix.Vector;
/**
* Incomplete Cholesky preconditioner without fill-in using a compressed row
* matrix as internal storage.
*/
public class ICC implements Preconditioner {
/**
* Factorisation matrix
*/
private final CompRowMatrix R;
/**
* Triangular view onto R for solution purposes
*/
private Matrix Rt;
/**
* Temporary vector for solving the factorised system
*/
private final Vector y;
/**
* Sets up the ICC preconditioner.
*
* @param R
* Matrix to use internally. For best performance, its non-zero
* pattern must conform to that of the system matrix
*/
public ICC(CompRowMatrix R) {
if (!R.isSquare())
throw new IllegalArgumentException(
"ICC only applies to square matrices");
this.R = R;
int n = R.numRows();
y = new DenseVector(n);
}
public Vector apply(Vector b, Vector x) {
// R'y = b, y = R'\b
Rt.transSolve(b, y);
// Rx = R'\b = y
return Rt.solve(y, x);
}
public Vector transApply(Vector b, Vector x) {
return apply(b, x);
}
public void setMatrix(Matrix A) {
R.set(A);
factor();
}
private void factor() {
int n = R.numRows();
// Internal CRS matrix storage
int[] colind = R.getColumnIndices();
int[] rowptr = R.getRowPointers();
double[] data = R.getData();
// Temporary storage of a dense row
double[] Rk = new double[n];
// Find the indices to the diagonal entries
int[] diagind = findDiagonalIndices(n, colind, rowptr);
// Go down along the main diagonal
for (int k = 0; k < n; ++k) {
// Expand current row to dense storage
Arrays.fill(Rk, 0);
for (int i = rowptr[k]; i < rowptr[k + 1]; ++i)
Rk[colind[i]] = data[i];
for (int i = 0; i < k; ++i) {
// Get the current diagonal entry
double Rii = data[diagind[i]];
if (Rii == 0)
throw new RuntimeException("Zero pivot encountered on row "
+ (i + 1) + " during ICC process");
// Elimination factor
double Rki = Rk[i] / Rii;
if (Rki == 0)
continue;
// Traverse the sparse row i, reducing on row k
for (int j = diagind[i] + 1; j < rowptr[i + 1]; ++j)
Rk[colind[j]] -= Rki * data[j];
}
// Store the row back into the factorisation matrix
if (Rk[k] == 0)
throw new RuntimeException(
"Zero diagonal entry encountered on row " + (k + 1)
+ " during ICC process");
double sqRkk = Math.sqrt(Rk[k]);
for (int i = diagind[k]; i < rowptr[k + 1]; ++i)
data[i] = Rk[colind[i]] / sqRkk;
}
Rt = new UpperCompRowMatrix(R, diagind);
}
private static int[] findDiagonalIndices(int m, int[] colind, int[] rowptr) {
int[] diagind = new int[m];
for (int k = 0; k < m; ++k) {
diagind[k] = no.uib.cipr.matrix.sparse.Arrays.binarySearch(colind,
k, rowptr[k], rowptr[k + 1]);
if (diagind[k] < 0)
throw new RuntimeException("Missing diagonal entry on row "
+ (k + 1));
}
return diagind;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy