no.uib.cipr.matrix.sparse.SSOR Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mt-java Show documentation
Show all versions of mt-java Show documentation
Matrix data structures, linear solvers, least squares methods, eigenvalue,
and singular value decompositions. For larger random dense matrices (above ~ 350 x 350)
matrix-matrix multiplication C = A.B is about 50% faster than MTJ.
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix.sparse;
import no.uib.cipr.matrix.DenseVector;
import no.uib.cipr.matrix.Matrix;
import no.uib.cipr.matrix.Vector;
/**
* SSOR preconditioner. Uses symmetrical successive overrelaxation as a
* preconditioner. Meant for symmetrical, positive definite matrices. For best
* performance, omega must be carefully chosen (between 0 and 2).
*/
public class SSOR implements Preconditioner {
/**
* Overrelaxation parameter for the forward sweep
*/
private double omegaF;
/**
* Overrelaxation parameter for the backwards sweep
*/
private double omegaR;
/**
* Holds a copy of the matrix A in the compressed row format
*/
private final CompRowMatrix F;
/**
* Indices to the diagonal entries of the matrix
*/
private final int[] diagind;
/**
* Temporary vector for holding the half-step state
*/
private final double[] xx;
/**
* True if the reverse (backward) sweep is to be done. Without this, the
* method is SOR instead of SSOR
*/
private final boolean reverse;
/**
* Constructor for SSOR.
*
* @param F
* Matrix to use internally. It will not be modified, thus the
* system matrix may be passed
* @param reverse
* True to perform a reverse sweep as well as the forward sweep.
* If false, this preconditioner becomes the SOR method instead
* @param omegaF
* Overrelaxation parameter for the forward sweep. Between 0 and
* 2.
* @param omegaR
* Overrelaxation parameter for the backwards sweep. Between 0
* and 2.
*/
public SSOR(CompRowMatrix F, boolean reverse, double omegaF, double omegaR) {
if (!F.isSquare())
throw new IllegalArgumentException(
"SSOR only applies to square matrices");
this.F = F;
this.reverse = reverse;
setOmega(omegaF, omegaR);
int n = F.numRows();
diagind = new int[n];
xx = new double[n];
}
/**
* Constructor for SSOR. Uses omega=1
with a backwards sweep.
*
* @param F
* Matrix to use internally. It will not be modified, thus the
* system matrix may be passed
*/
public SSOR(CompRowMatrix F) {
this(F, true, 1, 1);
}
/**
* Sets the overrelaxation parameters.
*
* @param omegaF
* Overrelaxation parameter for the forward sweep. Between 0 and
* 2.
* @param omegaR
* Overrelaxation parameter for the backwards sweep. Between 0
* and 2.
*/
public void setOmega(double omegaF, double omegaR) {
if (omegaF < 0 || omegaF > 2)
throw new IllegalArgumentException("omegaF must be between 0 and 2");
if (omegaR < 0 || omegaR > 2)
throw new IllegalArgumentException("omegaR must be between 0 and 2");
this.omegaF = omegaF;
this.omegaR = omegaR;
}
public void setMatrix(Matrix A) {
F.set(A);
int n = F.numRows();
int[] rowptr = F.getRowPointers();
int[] colind = F.getColumnIndices();
// Find the indices to the diagonal entries
for (int k = 0; k < n; ++k) {
diagind[k] = Arrays.binarySearch(colind, k, rowptr[k],
rowptr[k + 1]);
if (diagind[k] < 0)
throw new RuntimeException("Missing diagonal on row " + (k + 1));
}
}
public Vector apply(Vector b, Vector x) {
if (!(b instanceof DenseVector) || !(x instanceof DenseVector))
throw new IllegalArgumentException("Vectors must be DenseVectors");
int[] rowptr = F.getRowPointers();
int[] colind = F.getColumnIndices();
double[] data = F.getData();
double[] bd = ((DenseVector) b).getData();
double[] xd = ((DenseVector) x).getData();
int n = F.numRows();
System.arraycopy(xd, 0, xx, 0, n);
// Forward sweep (xd oldest, xx halfiterate)
for (int i = 0; i < n; ++i) {
double sigma = 0;
for (int j = rowptr[i]; j < diagind[i]; ++j)
sigma += data[j] * xx[colind[j]];
for (int j = diagind[i] + 1; j < rowptr[i + 1]; ++j)
sigma += data[j] * xd[colind[j]];
sigma = (bd[i] - sigma) / data[diagind[i]];
xx[i] = xd[i] + omegaF * (sigma - xd[i]);
}
// Stop here if the reverse sweep was not requested
if (!reverse) {
System.arraycopy(xx, 0, xd, 0, n);
return x;
}
// Backward sweep (xx oldest, xd half-iterate)
for (int i = n - 1; i >= 0; --i) {
double sigma = 0;
for (int j = rowptr[i]; j < diagind[i]; ++j)
sigma += data[j] * xx[colind[j]];
for (int j = diagind[i] + 1; j < rowptr[i + 1]; ++j)
sigma += data[j] * xd[colind[j]];
sigma = (bd[i] - sigma) / data[diagind[i]];
xd[i] = xx[i] + omegaR * (sigma - xx[i]);
}
return x;
}
public Vector transApply(Vector b, Vector x) {
// Assume a symmetric matrix
return apply(b, x);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy