All Downloads are FREE. Search and download functionalities are using the official Maven repository.

no.uib.cipr.matrix.sparse.ArpackGen Maven / Gradle / Ivy

Go to download

Matrix data structures, linear solvers, least squares methods, eigenvalue, and singular value decompositions. For larger random dense matrices (above ~ 350 x 350) matrix-matrix multiplication C = A.B is about 50% faster than MTJ.

The newest version!
package no.uib.cipr.matrix.sparse;

import com.github.fommil.netlib.ARPACK;
import no.uib.cipr.matrix.DenseVector;
import no.uib.cipr.matrix.DenseVectorSub;
import no.uib.cipr.matrix.Matrix;
import no.uib.cipr.matrix.Vector;
import org.netlib.util.doubleW;
import org.netlib.util.intW;

import java.util.Comparator;
import java.util.Map;
import java.util.TreeMap;

/**
 * Uses ARPACK to partially solve general eigensystems (ARPACK is designed to
 * compute a subset of eigenvalues/eigenvectors).
 *
 * @author Andreas Solti adopted from the class {@link no.uib.cipr.matrix.sparse.ArpackSym} by Sam Halliday
 */
public class ArpackGen {

    private boolean computeOnlyEigenvalues;

    public void setComputeOnlyEigenvalues(boolean computeOnlyEigenvalues) {
        this.computeOnlyEigenvalues = computeOnlyEigenvalues;
    }


    public enum Ritz {
        /**
         * compute the NEV largest (in magnitude) eigenvalues.
         */
        LM,
        /**
         * compute the NEV smallest (in magnitude) eigenvalues.
         */
        SM,
        /**
         * the NEV eigenvalues of largest real part.
         */
        LR,
        /**
         * the NEV eigenvalues of smallest real part.
         */
        SR,
        /**
         * want the NEV eigenvalues of largest imaginary part.
         */
        LI,
        /**
         *  want the NEV eigenvalues of smallest imaginary part.
         */
        SI
    }

    private final ARPACK arpack = ARPACK.getInstance();

    /**
     * The tolerance at which the iterations are allowed to stop.
     */
    public static double tolerance = 0.00001;

    public static double convergedTolerance = 1;

    /**
     * The maximum iterations allowed to perform until we decide that convergence is not attained.
     */
    public static int maxIterations = 10000;

    private final Matrix matrix;

    /**
     * If the matrix is symmetric, {@link no.uib.cipr.matrix.sparse.ArpackSym} is the better choice, as this property
     * can be exploited in computation.
     * @param matrix
     */
    public ArpackGen(Matrix matrix) {
        if (!matrix.isSquare())
            throw new IllegalArgumentException("matrix must be square");
        this.matrix = matrix;
        this.computeOnlyEigenvalues = true;
    }

    /**
     * Solve the eigensystem for the number of eigenvalues requested.
     * 

* NOTE: The references to the eigenvectors will keep alive a reference to a * {@code nev * n} double array, so use the {@code copy()} method to free it * up if only a subset is required. * * @param eigenvalues * @param ritz * preference for solutions * @return a map from eigenvalues to corresponding eigenvectors. */ public Map solve(int eigenvalues, Ritz ritz) { return solve(eigenvalues, ritz, tolerance); } /** * Solve the eigensystem for the number of eigenvalues requested. *

* NOTE: The references to the eigenvectors will keep alive a reference to a * {@code nev * n} double array, so use the {@code copy()} method to free it * up if only a subset is required. * * @param eigenvalues * @param ritz * preference for solutions * @return a map from eigenvalues to corresponding eigenvectors. */ public Map solve(int eigenvalues, Ritz ritz, double tolerance) { return solve(eigenvalues, ritz, tolerance, 0); } /** * * @param eigenvalues NEV Integer. (INPUT) * Number of eigenvalues of OP to be computed. 0 < NEV < N-1. (Where N is the matrix dimension) * @param ritz * @param tolerance * @param ncvModification * At present there is no a-priori analysis to guide the selection * of NCV relative to NEV. The only formal requirement is that NCV > NEV + 2. * However, it is recommended that NCV .ge. 2*NEV+1. If many problems of * the same type are to be solved, one should experiment with increasing * NCV while keeping NEV fixed for a given test problem. This will * usually decrease the required number of OP*x operations but it * also increases the work and storage required to maintain the orthogonal * basis vectors. The optimal "cross-over" with respect to CPU time * is problem dependent and must be determined empirically. * See Chapter 8 of Reference 2 for further information. */ public Map solve(int eigenvalues, Ritz ritz, double tolerance, int ncvModification) { if (eigenvalues <= 0) throw new IllegalArgumentException(eigenvalues + " <= 0"); if (eigenvalues > matrix.numColumns() - 2 ) throw new IllegalArgumentException("NEV " + eigenvalues + " >= " + (matrix.numColumns())+" - 2"); int n = matrix.numRows(); intW nev = new intW(eigenvalues); int ncv = Math.min(2 + eigenvalues + ncvModification, n); // Number of columns of the matrix V. NCV must satisfy the two inequalities 2 <= NCV-NEV and NCV <= N. String bmat = "I"; String which = ritz.name(); doubleW tol = new doubleW(tolerance); convergedTolerance = tolerance; intW info = new intW(0); int[] iparam = new int[11]; iparam[0] = 1; iparam[2] = Math.max(maxIterations, n); // maximum number of Arnoldi update operations allowed (default = 300?) iparam[4] = 1; // IPARAM(4) = NB: blocksize to be used in the recurrence. The code currently works only for NB = 1. iparam[6] = 1; // No longer referenced. Implicit restarting is ALWAYS used. iparam[7] = 1; // MODE On INPUT determines what type of eigenproblem is being solved. Must be 1,2,3,4; See under \Description of dnaupd for the four modes available. (Mode 1: A*x = lambda*x) intW ido = new intW(0); // used for initial residual (if info != 0) // and eventually the output residual double[] resid = new double[n]; // Lanczos basis vectors double[] v = new double[n * ncv]; // Arnoldi reverse communication double[] workd = new double[3 * n]; // private work array double[] workl = new double[3*ncv * ncv + 6*ncv]; int[] ipntr = new int[14]; int i = 0; while (true) { i++; arpack.dnaupd(ido, bmat, n, which, nev.val, tol, resid, ncv, v, n, iparam, ipntr, workd, workl, workl.length, info); if (ido.val == 99){ if (info.val != 1) { break; } else { // did not converge: Try lowering the accuracy: tol.val = tol.val * 10; convergedTolerance = tol.val; return solve(eigenvalues, ritz, tol.val, ncvModification); } } if (ido.val != -1 && ido.val != 1) throw new IllegalStateException("ido = " + ido.val); // could be refactored to handle the other types of mode av(workd, ipntr[0] - 1, ipntr[1] - 1); } if (info.val != 0 && info.val != 1) { if (info.val == 3) { // 3: No shifts could be applied during a cycle of the // Implicitly restarted Arnoldi iteration. One possibility // is to increase the size of NCV relative to NEV. return solve(eigenvalues, ritz, tolerance, ncvModification+1); } throw new IllegalStateException("info = " + info.val); } double[] dr = new double[nev.val+1]; double[] di = java.util.Arrays.copyOf(dr,dr.length); boolean[] select = new boolean[ncv]; double[] z = java.util.Arrays.copyOfRange(v, 0, (nev.val+1) * n); boolean computeRitzVectors = !this.computeOnlyEigenvalues; // RVEC LOGICAL (INPUT) // Specifies whether a basis for the invariant subspace corresponding // to the converged Ritz value approximations for the eigenproblem // A*z = lambda*B*z is computed. // RVEC = .FALSE. Compute Ritz values only. // RVEC = .TRUE. Compute the Ritz vectors or Schur vectors. arpack.dneupd(computeRitzVectors, "P", select, dr, di, z, 1, 0, 0, workd, bmat, n, which, nev, tol.val, resid, ncv, v, n, iparam, ipntr, workd, workl, workl.length, info); if (info.val != 0) { throw new IllegalStateException("info = " + info.val); } int computed = iparam[4]; Map solution = new TreeMap( new Comparator() { @Override public int compare(Double o1, Double o2) { // highest first return Double.compare(o2, o1); } }); DenseVector eigenvectors; eigenvectors = new DenseVector(v, false); for (i = 0; i < computed; i++) { double eigenvalue = Math.sqrt(Math.pow(dr[i],2) + Math.pow(di[i],2)); // take the length of the complex value DenseVectorSub eigenvector = new DenseVectorSub(eigenvectors,i * n, n); solution.put(eigenvalue, eigenvector); } return solution; } private void av(double[] work, int input_offset, int output_offset) { DenseVector w = new DenseVector(work, false); Vector x = new DenseVectorSub(w, input_offset, matrix.numColumns()); Vector y = new DenseVectorSub(w, output_offset, matrix.numColumns()); matrix.mult(x, y); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy