bouncycastle.math.ec.WNafMultiplier Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of woodlouse Show documentation
Show all versions of woodlouse Show documentation
Lightweight crypto toolkit for Android and Java 6+
The newest version!
package bouncycastle.math.ec;
import java.math.BigInteger;
/**
* Class implementing the WNAF (Window Non-Adjacent Form) multiplication
* algorithm.
*/
class WNafMultiplier implements ECMultiplier
{
/**
* Computes the Window NAF (non-adjacent Form) of an integer.
* @param width The width w
of the Window NAF. The width is
* defined as the minimal number w
, such that for any
* w
consecutive digits in the resulting representation, at
* most one is non-zero.
* @param k The integer of which the Window NAF is computed.
* @return The Window NAF of the given width, such that the following holds:
* k = ∑i=0l-1 ki2i
*
, where the ki
denote the elements of the
* returned byte[]
.
*/
public byte[] windowNaf(byte width, BigInteger k)
{
// The window NAF is at most 1 element longer than the binary
// representation of the integer k. byte can be used instead of short or
// int unless the window width is larger than 8. For larger width use
// short or int. However, a width of more than 8 is not efficient for
// m = log2(q) smaller than 2305 Bits. Note: Values for m larger than
// 1000 Bits are currently not used in practice.
byte[] wnaf = new byte[k.bitLength() + 1];
// 2^width as short and BigInteger
short pow2wB = (short)(1 << width);
BigInteger pow2wBI = BigInteger.valueOf(pow2wB);
int i = 0;
// The actual length of the WNAF
int length = 0;
// while k >= 1
while (k.signum() > 0)
{
// if k is odd
if (k.testBit(0))
{
// k mod 2^width
BigInteger remainder = k.mod(pow2wBI);
// if remainder > 2^(width - 1) - 1
if (remainder.testBit(width - 1))
{
wnaf[i] = (byte)(remainder.intValue() - pow2wB);
}
else
{
wnaf[i] = (byte)remainder.intValue();
}
// wnaf[i] is now in [-2^(width-1), 2^(width-1)-1]
k = k.subtract(BigInteger.valueOf(wnaf[i]));
length = i;
}
else
{
wnaf[i] = 0;
}
// k = k/2
k = k.shiftRight(1);
i++;
}
length++;
// Reduce the WNAF array to its actual length
byte[] wnafShort = new byte[length];
System.arraycopy(wnaf, 0, wnafShort, 0, length);
return wnafShort;
}
/**
* Multiplies this
by an integer k
using the
* Window NAF method.
* @param k The integer by which this
is multiplied.
* @return A new ECPoint
which equals this
* multiplied by k
.
*/
public ECPoint multiply(ECPoint p, BigInteger k, PreCompInfo preCompInfo)
{
WNafPreCompInfo wnafPreCompInfo;
if ((preCompInfo != null) && (preCompInfo instanceof WNafPreCompInfo))
{
wnafPreCompInfo = (WNafPreCompInfo)preCompInfo;
}
else
{
// Ignore empty PreCompInfo or PreCompInfo of incorrect type
wnafPreCompInfo = new WNafPreCompInfo();
}
// floor(log2(k))
int m = k.bitLength();
// width of the Window NAF
byte width;
// Required length of precomputation array
int reqPreCompLen;
// Determine optimal width and corresponding length of precomputation
// array based on literature values
if (m < 13)
{
width = 2;
reqPreCompLen = 1;
}
else
{
if (m < 41)
{
width = 3;
reqPreCompLen = 2;
}
else
{
if (m < 121)
{
width = 4;
reqPreCompLen = 4;
}
else
{
if (m < 337)
{
width = 5;
reqPreCompLen = 8;
}
else
{
if (m < 897)
{
width = 6;
reqPreCompLen = 16;
}
else
{
if (m < 2305)
{
width = 7;
reqPreCompLen = 32;
}
else
{
width = 8;
reqPreCompLen = 127;
}
}
}
}
}
}
// The length of the precomputation array
int preCompLen = 1;
ECPoint[] preComp = wnafPreCompInfo.getPreComp();
ECPoint twiceP = wnafPreCompInfo.getTwiceP();
// Check if the precomputed ECPoints already exist
if (preComp == null)
{
// Precomputation must be performed from scratch, create an empty
// precomputation array of desired length
preComp = new ECPoint[]{ p };
}
else
{
// Take the already precomputed ECPoints to start with
preCompLen = preComp.length;
}
if (twiceP == null)
{
// Compute twice(p)
twiceP = p.twice();
}
if (preCompLen < reqPreCompLen)
{
// Precomputation array must be made bigger, copy existing preComp
// array into the larger new preComp array
ECPoint[] oldPreComp = preComp;
preComp = new ECPoint[reqPreCompLen];
System.arraycopy(oldPreComp, 0, preComp, 0, preCompLen);
for (int i = preCompLen; i < reqPreCompLen; i++)
{
// Compute the new ECPoints for the precomputation array.
// The values 1, 3, 5, ..., 2^(width-1)-1 times p are
// computed
preComp[i] = twiceP.add(preComp[i - 1]);
}
}
// Compute the Window NAF of the desired width
byte[] wnaf = windowNaf(width, k);
int l = wnaf.length;
// Apply the Window NAF to p using the precomputed ECPoint values.
ECPoint q = p.getCurve().getInfinity();
for (int i = l - 1; i >= 0; i--)
{
q = q.twice();
if (wnaf[i] != 0)
{
if (wnaf[i] > 0)
{
q = q.add(preComp[(wnaf[i] - 1)/2]);
}
else
{
// wnaf[i] < 0
q = q.subtract(preComp[(-wnaf[i] - 1)/2]);
}
}
}
// Set PreCompInfo in ECPoint, such that it is available for next
// multiplication.
wnafPreCompInfo.setPreComp(preComp);
wnafPreCompInfo.setTwiceP(twiceP);
p.setPreCompInfo(wnafPreCompInfo);
return q;
}
}