All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.feilong.lib.lang3.ArrayUtils Maven / Gradle / Ivy

Go to download

feilong is a suite of core and expanded libraries that include utility classes, http, excel,cvs, io classes, and much much more.

There is a newer version: 4.0.8
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.feilong.lib.lang3;

import java.lang.reflect.Array;
import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.lang.reflect.Type;
import java.util.Arrays;
import java.util.BitSet;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Map;
import java.util.Random;

import com.feilong.lib.lang3.builder.EqualsBuilder;
import com.feilong.lib.lang3.builder.ToStringBuilder;
import com.feilong.lib.lang3.builder.ToStringStyle;
import com.feilong.lib.lang3.math.NumberUtils;

/**
 * 

* Operations on arrays, primitive arrays (like {@code int[]}) and * primitive wrapper arrays (like {@code Integer[]}). * *

* This class tries to handle {@code null} input gracefully. * An exception will not be thrown for a {@code null} * array input. However, an Object array that contains a {@code null} * element may throw an exception. Each method documents its behaviour. * *

* #ThreadSafe# * * @since 2.0 */ public class ArrayUtils{ /** * An empty immutable {@code boolean} array. */ public static final boolean[] EMPTY_BOOLEAN_ARRAY = new boolean[0]; /** * An empty immutable {@code Boolean} array. */ public static final Boolean[] EMPTY_BOOLEAN_OBJECT_ARRAY = new Boolean[0]; /** * An empty immutable {@code byte} array. */ public static final byte[] EMPTY_BYTE_ARRAY = new byte[0]; /** * An empty immutable {@code Byte} array. */ public static final Byte[] EMPTY_BYTE_OBJECT_ARRAY = new Byte[0]; /** * An empty immutable {@code char} array. */ public static final char[] EMPTY_CHAR_ARRAY = new char[0]; /** * An empty immutable {@code Character} array. */ public static final Character[] EMPTY_CHARACTER_OBJECT_ARRAY = new Character[0]; /** * An empty immutable {@code Class} array. */ public static final Class[] EMPTY_CLASS_ARRAY = new Class[0]; /** * An empty immutable {@code double} array. */ public static final double[] EMPTY_DOUBLE_ARRAY = new double[0]; /** * An empty immutable {@code Double} array. */ public static final Double[] EMPTY_DOUBLE_OBJECT_ARRAY = new Double[0]; /** * An empty immutable {@code Field} array. * * @since 3.10 */ public static final Field[] EMPTY_FIELD_ARRAY = new Field[0]; /** * An empty immutable {@code Method} array. * * @since 3.10 */ public static final Method[] EMPTY_METHOD_ARRAY = new Method[0]; /** * An empty immutable {@code float} array. */ public static final float[] EMPTY_FLOAT_ARRAY = new float[0]; /** * An empty immutable {@code Float} array. */ public static final Float[] EMPTY_FLOAT_OBJECT_ARRAY = new Float[0]; /** * An empty immutable {@code int} array. */ public static final int[] EMPTY_INT_ARRAY = new int[0]; /** * An empty immutable {@code Integer} array. */ public static final Integer[] EMPTY_INTEGER_OBJECT_ARRAY = new Integer[0]; /** * An empty immutable {@code long} array. */ public static final long[] EMPTY_LONG_ARRAY = new long[0]; /** * An empty immutable {@code Long} array. */ public static final Long[] EMPTY_LONG_OBJECT_ARRAY = new Long[0]; /** * An empty immutable {@code Object} array. */ public static final Object[] EMPTY_OBJECT_ARRAY = new Object[0]; /** * An empty immutable {@code short} array. */ public static final short[] EMPTY_SHORT_ARRAY = new short[0]; /** * An empty immutable {@code Short} array. */ public static final Short[] EMPTY_SHORT_OBJECT_ARRAY = new Short[0]; /** * An empty immutable {@code String} array. * * @deprecated use feilong */ @Deprecated public static final String[] EMPTY_STRING_ARRAY = new String[0]; /** * An empty immutable {@code Type} array. * * @since 3.10 */ public static final Type[] EMPTY_TYPE_ARRAY = new Type[0]; /** * The index value when an element is not found in a list or array: {@code -1}. * This value is returned by methods in this class and can also be used in comparisons with values returned by * various method from {@link java.util.List}. */ public static final int INDEX_NOT_FOUND = -1; //--------------------------------------------------------------- /** *

* Copies the given array and adds the given element at the end of the new array. * *

* The new array contains the same elements of the input * array plus the given element in the last position. The component type of * the new array is the same as that of the input array. * *

* If the input array is {@code null}, a new one element array is returned * whose component type is the same as the element. * *

     * ArrayUtils.add(null, true)          = [true]
     * ArrayUtils.add([true], false)       = [true, false]
     * ArrayUtils.add([true, false], true) = [true, false, true]
     * 
* * @param array * the array to copy and add the element to, may be {@code null} * @param element * the object to add at the last index of the new array * @return A new array containing the existing elements plus the new element * @since 2.1 */ public static boolean[] add(final boolean[] array,final boolean element){ final boolean[] newArray = (boolean[]) copyArrayGrow1(array, Boolean.TYPE); newArray[newArray.length - 1] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new array. * *

* The new array contains the same elements of the input * array plus the given element in the last position. The component type of * the new array is the same as that of the input array. * *

* If the input array is {@code null}, a new one element array is returned * whose component type is the same as the element. * *

     * ArrayUtils.add(null, 0)   = [0]
     * ArrayUtils.add([1], 0)    = [1, 0]
     * ArrayUtils.add([1, 0], 1) = [1, 0, 1]
     * 
* * @param array * the array to copy and add the element to, may be {@code null} * @param element * the object to add at the last index of the new array * @return A new array containing the existing elements plus the new element * @since 2.1 */ public static byte[] add(final byte[] array,final byte element){ final byte[] newArray = (byte[]) copyArrayGrow1(array, Byte.TYPE); newArray[newArray.length - 1] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new array. * *

* The new array contains the same elements of the input * array plus the given element in the last position. The component type of * the new array is the same as that of the input array. * *

* If the input array is {@code null}, a new one element array is returned * whose component type is the same as the element. * *

     * ArrayUtils.add(null, '0')       = ['0']
     * ArrayUtils.add(['1'], '0')      = ['1', '0']
     * ArrayUtils.add(['1', '0'], '1') = ['1', '0', '1']
     * 
* * @param array * the array to copy and add the element to, may be {@code null} * @param element * the object to add at the last index of the new array * @return A new array containing the existing elements plus the new element * @since 2.1 */ public static char[] add(final char[] array,final char element){ final char[] newArray = (char[]) copyArrayGrow1(array, Character.TYPE); newArray[newArray.length - 1] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new array. * *

* The new array contains the same elements of the input * array plus the given element in the last position. The component type of * the new array is the same as that of the input array. * *

* If the input array is {@code null}, a new one element array is returned * whose component type is the same as the element. * *

     * ArrayUtils.add(null, 0)   = [0]
     * ArrayUtils.add([1], 0)    = [1, 0]
     * ArrayUtils.add([1, 0], 1) = [1, 0, 1]
     * 
* * @param array * the array to copy and add the element to, may be {@code null} * @param element * the object to add at the last index of the new array * @return A new array containing the existing elements plus the new element * @since 2.1 */ public static double[] add(final double[] array,final double element){ final double[] newArray = (double[]) copyArrayGrow1(array, Double.TYPE); newArray[newArray.length - 1] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new array. * *

* The new array contains the same elements of the input * array plus the given element in the last position. The component type of * the new array is the same as that of the input array. * *

* If the input array is {@code null}, a new one element array is returned * whose component type is the same as the element. * *

     * ArrayUtils.add(null, 0)   = [0]
     * ArrayUtils.add([1], 0)    = [1, 0]
     * ArrayUtils.add([1, 0], 1) = [1, 0, 1]
     * 
* * @param array * the array to copy and add the element to, may be {@code null} * @param element * the object to add at the last index of the new array * @return A new array containing the existing elements plus the new element * @since 2.1 */ public static float[] add(final float[] array,final float element){ final float[] newArray = (float[]) copyArrayGrow1(array, Float.TYPE); newArray[newArray.length - 1] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new array. * *

* The new array contains the same elements of the input * array plus the given element in the last position. The component type of * the new array is the same as that of the input array. * *

* If the input array is {@code null}, a new one element array is returned * whose component type is the same as the element. * *

     * ArrayUtils.add(null, 0)   = [0]
     * ArrayUtils.add([1], 0)    = [1, 0]
     * ArrayUtils.add([1, 0], 1) = [1, 0, 1]
     * 
* * @param array * the array to copy and add the element to, may be {@code null} * @param element * the object to add at the last index of the new array * @return A new array containing the existing elements plus the new element * @since 2.1 */ public static int[] add(final int[] array,final int element){ final int[] newArray = (int[]) copyArrayGrow1(array, Integer.TYPE); newArray[newArray.length - 1] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new array. * *

* The new array contains the same elements of the input * array plus the given element in the last position. The component type of * the new array is the same as that of the input array. * *

* If the input array is {@code null}, a new one element array is returned * whose component type is the same as the element. * *

     * ArrayUtils.add(null, 0)   = [0]
     * ArrayUtils.add([1], 0)    = [1, 0]
     * ArrayUtils.add([1, 0], 1) = [1, 0, 1]
     * 
* * @param array * the array to copy and add the element to, may be {@code null} * @param element * the object to add at the last index of the new array * @return A new array containing the existing elements plus the new element * @since 2.1 */ public static long[] add(final long[] array,final long element){ final long[] newArray = (long[]) copyArrayGrow1(array, Long.TYPE); newArray[newArray.length - 1] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new array. * *

* The new array contains the same elements of the input * array plus the given element in the last position. The component type of * the new array is the same as that of the input array. * *

* If the input array is {@code null}, a new one element array is returned * whose component type is the same as the element. * *

     * ArrayUtils.add(null, 0)   = [0]
     * ArrayUtils.add([1], 0)    = [1, 0]
     * ArrayUtils.add([1, 0], 1) = [1, 0, 1]
     * 
* * @param array * the array to copy and add the element to, may be {@code null} * @param element * the object to add at the last index of the new array * @return A new array containing the existing elements plus the new element * @since 2.1 */ public static short[] add(final short[] array,final short element){ final short[] newArray = (short[]) copyArrayGrow1(array, Short.TYPE); newArray[newArray.length - 1] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new array. * *

* The new array contains the same elements of the input * array plus the given element in the last position. The component type of * the new array is the same as that of the input array. * *

* If the input array is {@code null}, a new one element array is returned * whose component type is the same as the element, unless the element itself is null, * in which case the return type is Object[] * *

     * ArrayUtils.add(null, null)      = IllegalArgumentException
     * ArrayUtils.add(null, "a")       = ["a"]
     * ArrayUtils.add(["a"], null)     = ["a", null]
     * ArrayUtils.add(["a"], "b")      = ["a", "b"]
     * ArrayUtils.add(["a", "b"], "c") = ["a", "b", "c"]
     * 
* * @param * the component type of the array * @param array * the array to "add" the element to, may be {@code null} * @param element * the object to add, may be {@code null} * @return A new array containing the existing elements plus the new element * The returned array type will be that of the input array (unless null), * in which case it will have the same type as the element. * If both are null, an IllegalArgumentException is thrown * @since 2.1 * @throws IllegalArgumentException * if both arguments are null */ public static T[] add(final T[] array,final T element){ Class type; if (array != null){ type = array.getClass().getComponentType(); }else if (element != null){ type = element.getClass(); }else{ throw new IllegalArgumentException("Arguments cannot both be null"); } @SuppressWarnings("unchecked") // type must be T final T[] newArray = (T[]) copyArrayGrow1(array, type); newArray[newArray.length - 1] = element; return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* The new array contains all of the element of {@code array1} followed * by all of the elements {@code array2}. When an array is returned, it is always * a new array. * *

     * ArrayUtils.addAll(array1, null)   = cloned copy of array1
     * ArrayUtils.addAll(null, array2)   = cloned copy of array2
     * ArrayUtils.addAll([], [])         = []
     * 
* * @param array1 * the first array whose elements are added to the new array. * @param array2 * the second array whose elements are added to the new array. * @return The new boolean[] array. * @since 2.1 */ public static boolean[] addAll(final boolean[] array1,final boolean...array2){ if (array1 == null){ return clone(array2); }else if (array2 == null){ return clone(array1); } final boolean[] joinedArray = new boolean[array1.length + array2.length]; System.arraycopy(array1, 0, joinedArray, 0, array1.length); System.arraycopy(array2, 0, joinedArray, array1.length, array2.length); return joinedArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* The new array contains all of the element of {@code array1} followed * by all of the elements {@code array2}. When an array is returned, it is always * a new array. * *

     * ArrayUtils.addAll(array1, null)   = cloned copy of array1
     * ArrayUtils.addAll(null, array2)   = cloned copy of array2
     * ArrayUtils.addAll([], [])         = []
     * 
* * @param array1 * the first array whose elements are added to the new array. * @param array2 * the second array whose elements are added to the new array. * @return The new byte[] array. * @since 2.1 */ public static byte[] addAll(final byte[] array1,final byte...array2){ if (array1 == null){ return clone(array2); }else if (array2 == null){ return clone(array1); } final byte[] joinedArray = new byte[array1.length + array2.length]; System.arraycopy(array1, 0, joinedArray, 0, array1.length); System.arraycopy(array2, 0, joinedArray, array1.length, array2.length); return joinedArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* The new array contains all of the element of {@code array1} followed * by all of the elements {@code array2}. When an array is returned, it is always * a new array. * *

     * ArrayUtils.addAll(array1, null)   = cloned copy of array1
     * ArrayUtils.addAll(null, array2)   = cloned copy of array2
     * ArrayUtils.addAll([], [])         = []
     * 
* * @param array1 * the first array whose elements are added to the new array. * @param array2 * the second array whose elements are added to the new array. * @return The new char[] array. * @since 2.1 */ public static char[] addAll(final char[] array1,final char...array2){ if (array1 == null){ return clone(array2); }else if (array2 == null){ return clone(array1); } final char[] joinedArray = new char[array1.length + array2.length]; System.arraycopy(array1, 0, joinedArray, 0, array1.length); System.arraycopy(array2, 0, joinedArray, array1.length, array2.length); return joinedArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* The new array contains all of the element of {@code array1} followed * by all of the elements {@code array2}. When an array is returned, it is always * a new array. * *

     * ArrayUtils.addAll(array1, null)   = cloned copy of array1
     * ArrayUtils.addAll(null, array2)   = cloned copy of array2
     * ArrayUtils.addAll([], [])         = []
     * 
* * @param array1 * the first array whose elements are added to the new array. * @param array2 * the second array whose elements are added to the new array. * @return The new double[] array. * @since 2.1 */ public static double[] addAll(final double[] array1,final double...array2){ if (array1 == null){ return clone(array2); }else if (array2 == null){ return clone(array1); } final double[] joinedArray = new double[array1.length + array2.length]; System.arraycopy(array1, 0, joinedArray, 0, array1.length); System.arraycopy(array2, 0, joinedArray, array1.length, array2.length); return joinedArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* The new array contains all of the element of {@code array1} followed * by all of the elements {@code array2}. When an array is returned, it is always * a new array. * *

     * ArrayUtils.addAll(array1, null)   = cloned copy of array1
     * ArrayUtils.addAll(null, array2)   = cloned copy of array2
     * ArrayUtils.addAll([], [])         = []
     * 
* * @param array1 * the first array whose elements are added to the new array. * @param array2 * the second array whose elements are added to the new array. * @return The new float[] array. * @since 2.1 */ public static float[] addAll(final float[] array1,final float...array2){ if (array1 == null){ return clone(array2); }else if (array2 == null){ return clone(array1); } final float[] joinedArray = new float[array1.length + array2.length]; System.arraycopy(array1, 0, joinedArray, 0, array1.length); System.arraycopy(array2, 0, joinedArray, array1.length, array2.length); return joinedArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* The new array contains all of the element of {@code array1} followed * by all of the elements {@code array2}. When an array is returned, it is always * a new array. * *

     * ArrayUtils.addAll(array1, null)   = cloned copy of array1
     * ArrayUtils.addAll(null, array2)   = cloned copy of array2
     * ArrayUtils.addAll([], [])         = []
     * 
* * @param array1 * the first array whose elements are added to the new array. * @param array2 * the second array whose elements are added to the new array. * @return The new int[] array. * @since 2.1 */ public static int[] addAll(final int[] array1,final int...array2){ if (array1 == null){ return clone(array2); }else if (array2 == null){ return clone(array1); } final int[] joinedArray = new int[array1.length + array2.length]; System.arraycopy(array1, 0, joinedArray, 0, array1.length); System.arraycopy(array2, 0, joinedArray, array1.length, array2.length); return joinedArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* The new array contains all of the element of {@code array1} followed * by all of the elements {@code array2}. When an array is returned, it is always * a new array. * *

     * ArrayUtils.addAll(array1, null)   = cloned copy of array1
     * ArrayUtils.addAll(null, array2)   = cloned copy of array2
     * ArrayUtils.addAll([], [])         = []
     * 
* * @param array1 * the first array whose elements are added to the new array. * @param array2 * the second array whose elements are added to the new array. * @return The new long[] array. * @since 2.1 */ public static long[] addAll(final long[] array1,final long...array2){ if (array1 == null){ return clone(array2); }else if (array2 == null){ return clone(array1); } final long[] joinedArray = new long[array1.length + array2.length]; System.arraycopy(array1, 0, joinedArray, 0, array1.length); System.arraycopy(array2, 0, joinedArray, array1.length, array2.length); return joinedArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* The new array contains all of the element of {@code array1} followed * by all of the elements {@code array2}. When an array is returned, it is always * a new array. * *

     * ArrayUtils.addAll(array1, null)   = cloned copy of array1
     * ArrayUtils.addAll(null, array2)   = cloned copy of array2
     * ArrayUtils.addAll([], [])         = []
     * 
* * @param array1 * the first array whose elements are added to the new array. * @param array2 * the second array whose elements are added to the new array. * @return The new short[] array. * @since 2.1 */ public static short[] addAll(final short[] array1,final short...array2){ if (array1 == null){ return clone(array2); }else if (array2 == null){ return clone(array1); } final short[] joinedArray = new short[array1.length + array2.length]; System.arraycopy(array1, 0, joinedArray, 0, array1.length); System.arraycopy(array2, 0, joinedArray, array1.length, array2.length); return joinedArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* The new array contains all of the element of {@code array1} followed * by all of the elements {@code array2}. When an array is returned, it is always * a new array. * *

     * ArrayUtils.addAll(null, null)     = null
     * ArrayUtils.addAll(array1, null)   = cloned copy of array1
     * ArrayUtils.addAll(null, array2)   = cloned copy of array2
     * ArrayUtils.addAll([], [])         = []
     * ArrayUtils.addAll([null], [null]) = [null, null]
     * ArrayUtils.addAll(["a", "b", "c"], ["1", "2", "3"]) = ["a", "b", "c", "1", "2", "3"]
     * 
* * @param * the component type of the array * @param array1 * the first array whose elements are added to the new array, may be {@code null} * @param array2 * the second array whose elements are added to the new array, may be {@code null} * @return The new array, {@code null} if both arrays are {@code null}. * The type of the new array is the type of the first array, * unless the first array is null, in which case the type is the same as the second array. * @since 2.1 * @throws IllegalArgumentException * if the array types are incompatible */ public static T[] addAll(final T[] array1,@SuppressWarnings("unchecked") final T...array2){ if (array1 == null){ return clone(array2); }else if (array2 == null){ return clone(array1); } final Class type1 = array1.getClass().getComponentType(); @SuppressWarnings("unchecked") // OK, because array is of type T final T[] joinedArray = (T[]) Array.newInstance(type1, array1.length + array2.length); System.arraycopy(array1, 0, joinedArray, 0, array1.length); try{ System.arraycopy(array2, 0, joinedArray, array1.length, array2.length); }catch (final ArrayStoreException ase){ // Check if problem was due to incompatible types /* * We do this here, rather than before the copy because: * - it would be a wasted check most of the time * - safer, in case check turns out to be too strict */ final Class type2 = array2.getClass().getComponentType(); if (!type1.isAssignableFrom(type2)){ throw new IllegalArgumentException("Cannot store " + type2.getName() + " in an array of " + type1.getName(), ase); } throw ase; // No, so rethrow original } return joinedArray; } /** * Copies the given array and adds the given element at the beginning of the new array. * *

* The new array contains the same elements of the input array plus the given element in the first position. The * component type of the new array is the same as that of the input array. *

* *

* If the input array is {@code null}, a new one element array is returned whose component type is the same as the * element. *

* *
     * ArrayUtils.add(null, true)          = [true]
     * ArrayUtils.add([true], false)       = [false, true]
     * ArrayUtils.add([true, false], true) = [true, true, false]
     * 
* * @param array * the array to "add" the element to, may be {@code null}. * @param element * the object to add. * @return A new array containing the existing elements plus the new element The returned array type will be that of * the input array (unless null), in which case it will have the same type as the element. * @since 3.10 */ public static boolean[] addFirst(final boolean[] array,final boolean element){ return array == null ? add(array, element) : insert(0, array, element); } /** * Copies the given array and adds the given element at the beginning of the new array. * *

* The new array contains the same elements of the input array plus the given element in the first position. The * component type of the new array is the same as that of the input array. *

* *

* If the input array is {@code null}, a new one element array is returned whose component type is the same as the * element. *

* *
     * ArrayUtils.add(null, 1)   = [1]
     * ArrayUtils.add([1], 0)    = [0, 1]
     * ArrayUtils.add([1, 0], 1) = [1, 1, 0]
     * 
* * @param array * the array to "add" the element to, may be {@code null}. * @param element * the object to add. * @return A new array containing the existing elements plus the new element The returned array type will be that of * the input array (unless null), in which case it will have the same type as the element. * @since 3.10 */ public static byte[] addFirst(final byte[] array,final byte element){ return array == null ? add(array, element) : insert(0, array, element); } /** * Copies the given array and adds the given element at the beginning of the new array. * *

* The new array contains the same elements of the input array plus the given element in the first position. The * component type of the new array is the same as that of the input array. *

* *

* If the input array is {@code null}, a new one element array is returned whose component type is the same as the * element. *

* *
     * ArrayUtils.add(null, '1')       = ['1']
     * ArrayUtils.add(['1'], '0')      = ['0', '1']
     * ArrayUtils.add(['1', '0'], '1') = ['1', '1', '0']
     * 
* * @param array * the array to "add" the element to, may be {@code null}. * @param element * the object to add. * @return A new array containing the existing elements plus the new element The returned array type will be that of * the input array (unless null), in which case it will have the same type as the element. * @since 3.10 */ public static char[] addFirst(final char[] array,final char element){ return array == null ? add(array, element) : insert(0, array, element); } /** * Copies the given array and adds the given element at the beginning of the new array. * *

* The new array contains the same elements of the input array plus the given element in the first position. The * component type of the new array is the same as that of the input array. *

* *

* If the input array is {@code null}, a new one element array is returned whose component type is the same as the * element. *

* *
     * ArrayUtils.add(null, 1)   = [1]
     * ArrayUtils.add([1], 0)    = [0, 1]
     * ArrayUtils.add([1, 0], 1) = [1, 1, 0]
     * 
* * @param array * the array to "add" the element to, may be {@code null}. * @param element * the object to add. * @return A new array containing the existing elements plus the new element The returned array type will be that of * the input array (unless null), in which case it will have the same type as the element. * @since 3.10 */ public static double[] addFirst(final double[] array,final double element){ return array == null ? add(array, element) : insert(0, array, element); } /** * Copies the given array and adds the given element at the beginning of the new array. * *

* The new array contains the same elements of the input array plus the given element in the first position. The * component type of the new array is the same as that of the input array. *

* *

* If the input array is {@code null}, a new one element array is returned whose component type is the same as the * element. *

* *
     * ArrayUtils.add(null, 1)   = [1]
     * ArrayUtils.add([1], 0)    = [0, 1]
     * ArrayUtils.add([1, 0], 1) = [1, 1, 0]
     * 
* * @param array * the array to "add" the element to, may be {@code null}. * @param element * the object to add. * @return A new array containing the existing elements plus the new element The returned array type will be that of * the input array (unless null), in which case it will have the same type as the element. * @since 3.10 */ public static float[] addFirst(final float[] array,final float element){ return array == null ? add(array, element) : insert(0, array, element); } /** * Copies the given array and adds the given element at the beginning of the new array. * *

* The new array contains the same elements of the input array plus the given element in the first position. The * component type of the new array is the same as that of the input array. *

* *

* If the input array is {@code null}, a new one element array is returned whose component type is the same as the * element. *

* *
     * ArrayUtils.add(null, 1)   = [1]
     * ArrayUtils.add([1], 0)    = [0, 1]
     * ArrayUtils.add([1, 0], 1) = [1, 1, 0]
     * 
* * @param array * the array to "add" the element to, may be {@code null}. * @param element * the object to add. * @return A new array containing the existing elements plus the new element The returned array type will be that of * the input array (unless null), in which case it will have the same type as the element. * @since 3.10 */ public static int[] addFirst(final int[] array,final int element){ return array == null ? add(array, element) : insert(0, array, element); } /** * Copies the given array and adds the given element at the beginning of the new array. * *

* The new array contains the same elements of the input array plus the given element in the first position. The * component type of the new array is the same as that of the input array. *

* *

* If the input array is {@code null}, a new one element array is returned whose component type is the same as the * element. *

* *
     * ArrayUtils.add(null, 1)   = [1]
     * ArrayUtils.add([1], 0)    = [0, 1]
     * ArrayUtils.add([1, 0], 1) = [1, 1, 0]
     * 
* * @param array * the array to "add" the element to, may be {@code null}. * @param element * the object to add. * @return A new array containing the existing elements plus the new element The returned array type will be that of * the input array (unless null), in which case it will have the same type as the element. * @since 3.10 */ public static long[] addFirst(final long[] array,final long element){ return array == null ? add(array, element) : insert(0, array, element); } /** * Copies the given array and adds the given element at the beginning of the new array. * *

* The new array contains the same elements of the input array plus the given element in the first position. The * component type of the new array is the same as that of the input array. *

* *

* If the input array is {@code null}, a new one element array is returned whose component type is the same as the * element. *

* *
     * ArrayUtils.add(null, 1)   = [1]
     * ArrayUtils.add([1], 0)    = [0, 1]
     * ArrayUtils.add([1, 0], 1) = [1, 1, 0]
     * 
* * @param array * the array to "add" the element to, may be {@code null}. * @param element * the object to add. * @return A new array containing the existing elements plus the new element The returned array type will be that of * the input array (unless null), in which case it will have the same type as the element. * @since 3.10 */ public static short[] addFirst(final short[] array,final short element){ return array == null ? add(array, element) : insert(0, array, element); } /** * Copies the given array and adds the given element at the beginning of the new array. * *

* The new array contains the same elements of the input array plus the given element in the first positioaddFirstaddFirstaddFirstn. The * component type of the new array is the same as that of the input array. *

* *

* If the input array is {@code null}, a new one element array is returned whose component type is the same as the * element, unless the element itself is null, in which case the return type is Object[] *

* *
     * ArrayUtils.add(null, null)      = IllegalArgumentException
     * ArrayUtils.add(null, "a")       = ["a"]
     * ArrayUtils.add(["a"], null)     = [null, "a"]
     * ArrayUtils.add(["a"], "b")      = ["b", "a"]
     * ArrayUtils.add(["a", "b"], "c") = ["c", "a", "b"]
     * 
* * @param * the component type of the array * @param array * the array to "add" the element to, may be {@code null} * @param element * the object to add, may be {@code null} * @return A new array containing the existing elements plus the new element The returned array type will be that of * the input array (unless null), in which case it will have the same type as the element. If both are null, * an IllegalArgumentException is thrown * @since 3.10 * @throws IllegalArgumentException * if both arguments are null */ public static T[] addFirst(final T[] array,final T element){ return array == null ? add(array, element) : insert(0, array, element); } /** *

* Clones an array returning a typecast result and handling * {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * the array to clone, may be {@code null} * @return the cloned array, {@code null} if {@code null} input */ public static boolean[] clone(final boolean[] array){ if (array == null){ return null; } return array.clone(); } /** *

* Clones an array returning a typecast result and handling * {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * the array to clone, may be {@code null} * @return the cloned array, {@code null} if {@code null} input */ public static byte[] clone(final byte[] array){ if (array == null){ return null; } return array.clone(); } /** *

* Clones an array returning a typecast result and handling * {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * the array to clone, may be {@code null} * @return the cloned array, {@code null} if {@code null} input */ public static char[] clone(final char[] array){ if (array == null){ return null; } return array.clone(); } /** *

* Clones an array returning a typecast result and handling * {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * the array to clone, may be {@code null} * @return the cloned array, {@code null} if {@code null} input */ public static double[] clone(final double[] array){ if (array == null){ return null; } return array.clone(); } /** *

* Clones an array returning a typecast result and handling * {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * the array to clone, may be {@code null} * @return the cloned array, {@code null} if {@code null} input */ public static float[] clone(final float[] array){ if (array == null){ return null; } return array.clone(); } /** *

* Clones an array returning a typecast result and handling * {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * the array to clone, may be {@code null} * @return the cloned array, {@code null} if {@code null} input */ public static int[] clone(final int[] array){ if (array == null){ return null; } return array.clone(); } /** *

* Clones an array returning a typecast result and handling * {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * the array to clone, may be {@code null} * @return the cloned array, {@code null} if {@code null} input */ public static long[] clone(final long[] array){ if (array == null){ return null; } return array.clone(); } /** *

* Clones an array returning a typecast result and handling * {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * the array to clone, may be {@code null} * @return the cloned array, {@code null} if {@code null} input */ public static short[] clone(final short[] array){ if (array == null){ return null; } return array.clone(); } // Clone //----------------------------------------------------------------------- /** *

* Shallow clones an array returning a typecast result and handling * {@code null}. * *

* The objects in the array are not cloned, thus there is no special * handling for multi-dimensional arrays. * *

* This method returns {@code null} for a {@code null} input array. * * @param * the component type of the array * @param array * the array to shallow clone, may be {@code null} * @return the cloned array, {@code null} if {@code null} input */ public static T[] clone(final T[] array){ if (array == null){ return null; } return array.clone(); } /** *

* Checks if the value is in the given array. * *

* The method returns {@code false} if a {@code null} array is passed in. * * @param array * the array to search through * @param valueToFind * the value to find * @return {@code true} if the array contains the object */ public static boolean contains(final boolean[] array,final boolean valueToFind){ return indexOf(array, valueToFind) != INDEX_NOT_FOUND; } /** *

* Checks if the value is in the given array. * *

* The method returns {@code false} if a {@code null} array is passed in. * * @param array * the array to search through * @param valueToFind * the value to find * @return {@code true} if the array contains the object */ public static boolean contains(final byte[] array,final byte valueToFind){ return indexOf(array, valueToFind) != INDEX_NOT_FOUND; } /** *

* Checks if the value is in the given array. * *

* The method returns {@code false} if a {@code null} array is passed in. * * @param array * the array to search through * @param valueToFind * the value to find * @return {@code true} if the array contains the object * @since 2.1 */ public static boolean contains(final char[] array,final char valueToFind){ return indexOf(array, valueToFind) != INDEX_NOT_FOUND; } /** *

* Checks if the value is in the given array. * *

* The method returns {@code false} if a {@code null} array is passed in. * * @param array * the array to search through * @param valueToFind * the value to find * @return {@code true} if the array contains the object */ public static boolean contains(final double[] array,final double valueToFind){ return indexOf(array, valueToFind) != INDEX_NOT_FOUND; } /** *

* Checks if a value falling within the given tolerance is in the * given array. If the array contains a value within the inclusive range * defined by (value - tolerance) to (value + tolerance). * *

* The method returns {@code false} if a {@code null} array * is passed in. * * @param array * the array to search * @param valueToFind * the value to find * @param tolerance * the array contains the tolerance of the search * @return true if value falling within tolerance is in array */ public static boolean contains(final double[] array,final double valueToFind,final double tolerance){ return indexOf(array, valueToFind, 0, tolerance) != INDEX_NOT_FOUND; } /** *

* Checks if the value is in the given array. * *

* The method returns {@code false} if a {@code null} array is passed in. * * @param array * the array to search through * @param valueToFind * the value to find * @return {@code true} if the array contains the object */ public static boolean contains(final float[] array,final float valueToFind){ return indexOf(array, valueToFind) != INDEX_NOT_FOUND; } /** *

* Checks if the value is in the given array. * *

* The method returns {@code false} if a {@code null} array is passed in. * * @param array * the array to search through * @param valueToFind * the value to find * @return {@code true} if the array contains the object */ public static boolean contains(final int[] array,final int valueToFind){ return indexOf(array, valueToFind) != INDEX_NOT_FOUND; } /** *

* Checks if the value is in the given array. * *

* The method returns {@code false} if a {@code null} array is passed in. * * @param array * the array to search through * @param valueToFind * the value to find * @return {@code true} if the array contains the object */ public static boolean contains(final long[] array,final long valueToFind){ return indexOf(array, valueToFind) != INDEX_NOT_FOUND; } /** *

* Checks if the object is in the given array. * *

* The method returns {@code false} if a {@code null} array is passed in. * * @param array * the array to search through * @param objectToFind * the object to find * @return {@code true} if the array contains the object */ public static boolean contains(final Object[] array,final Object objectToFind){ return indexOf(array, objectToFind) != INDEX_NOT_FOUND; } /** *

* Checks if the value is in the given array. * *

* The method returns {@code false} if a {@code null} array is passed in. * * @param array * the array to search through * @param valueToFind * the value to find * @return {@code true} if the array contains the object */ public static boolean contains(final short[] array,final short valueToFind){ return indexOf(array, valueToFind) != INDEX_NOT_FOUND; } /** * Returns a copy of the given array of size 1 greater than the argument. * The last value of the array is left to the default value. * * @param array * The array to copy, must not be {@code null}. * @param newArrayComponentType * If {@code array} is {@code null}, create a * size 1 array of this type. * @return A new copy of the array of size 1 greater than the input. */ private static Object copyArrayGrow1(final Object array,final Class newArrayComponentType){ if (array != null){ final int arrayLength = Array.getLength(array); final Object newArray = Array.newInstance(array.getClass().getComponentType(), arrayLength + 1); System.arraycopy(array, 0, newArray, 0, arrayLength); return newArray; } return Array.newInstance(newArrayComponentType, 1); } //----------------------------------------------------------------------- /** *

* Returns the length of the specified array. * This method can deal with {@code Object} arrays and with primitive arrays. * *

* If the input array is {@code null}, {@code 0} is returned. * *

     * ArrayUtils.getLength(null)            = 0
     * ArrayUtils.getLength([])              = 0
     * ArrayUtils.getLength([null])          = 1
     * ArrayUtils.getLength([true, false])   = 2
     * ArrayUtils.getLength([1, 2, 3])       = 3
     * ArrayUtils.getLength(["a", "b", "c"]) = 3
     * 
* * @param array * the array to retrieve the length from, may be null * @return The length of the array, or {@code 0} if the array is {@code null} * @throws IllegalArgumentException * if the object argument is not an array. * @since 2.1 */ public static int getLength(final Object array){ if (array == null){ return 0; } return Array.getLength(array); } /** * Finds the indices of the given value in the array. * *

* This method returns an empty BitSet for a {@code null} input array. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return a BitSet of all the the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final boolean[] array,final boolean valueToFind){ return indexesOf(array, valueToFind, 0); } /** * Finds the indices of the given value in the array starting at the given index. * *

* This method returns an empty BitSet for a {@code null} input array. *

* *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return an empty BitSet ({@code -1}). *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return a BitSet of all the indices of the value within the array, * an empty BitSet if not found or {@code null} * array input * @since 3.10 */ public static BitSet indexesOf(final boolean[] array,final boolean valueToFind,int startIndex){ final BitSet bitSet = new BitSet(); if (array == null){ return bitSet; } while (startIndex < array.length){ startIndex = indexOf(array, valueToFind, startIndex); if (startIndex == INDEX_NOT_FOUND){ break; } bitSet.set(startIndex); ++startIndex; } return bitSet; } /** * Finds the indices of the given value in the array. * *

* This method returns an empty BitSet for a {@code null} input array. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return a BitSet of all the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final byte[] array,final byte valueToFind){ return indexesOf(array, valueToFind, 0); } /** * Finds the indices of the given value in the array starting at the given index. * *

* This method returns an empty BitSet for a {@code null} input array. *

* *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return an empty BitSet. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return a BitSet of all the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final byte[] array,final byte valueToFind,int startIndex){ final BitSet bitSet = new BitSet(); if (array == null){ return bitSet; } while (startIndex < array.length){ startIndex = indexOf(array, valueToFind, startIndex); if (startIndex == INDEX_NOT_FOUND){ break; } bitSet.set(startIndex); ++startIndex; } return bitSet; } /** * Finds the indices of the given value in the array. * *

* This method returns an empty BitSet for a {@code null} input array. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return a BitSet of all the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final char[] array,final char valueToFind){ return indexesOf(array, valueToFind, 0); } /** * Finds the indices of the given value in the array starting at the given index. * *

* This method returns an empty BitSet for a {@code null} input array. *

* *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return an empty BitSet. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return a BitSet of all the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final char[] array,final char valueToFind,int startIndex){ final BitSet bitSet = new BitSet(); if (array == null){ return bitSet; } while (startIndex < array.length){ startIndex = indexOf(array, valueToFind, startIndex); if (startIndex == INDEX_NOT_FOUND){ break; } bitSet.set(startIndex); ++startIndex; } return bitSet; } /** * Finds the indices of the given value in the array. * *

* This method returns empty BitSet for a {@code null} input array. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return a BitSet of all the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final double[] array,final double valueToFind){ return indexesOf(array, valueToFind, 0); } /** * Finds the indices of the given value within a given tolerance in the array. * *

* This method will return all the indices of the value which fall between the region * defined by valueToFind - tolerance and valueToFind + tolerance, each time between the nearest integers. *

* *

* This method returns an empty BitSet for a {@code null} input array. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param tolerance * tolerance of the search * @return a BitSet of all the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final double[] array,final double valueToFind,final double tolerance){ return indexesOf(array, valueToFind, 0, tolerance); } /** * Finds the indices of the given value in the array starting at the given index. * *

* This method returns an empty BitSet for a {@code null} input array. *

* *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return an empty BitSet. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return a BitSet of the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final double[] array,final double valueToFind,int startIndex){ final BitSet bitSet = new BitSet(); if (array == null){ return bitSet; } while (startIndex < array.length){ startIndex = indexOf(array, valueToFind, startIndex); if (startIndex == INDEX_NOT_FOUND){ break; } bitSet.set(startIndex); ++startIndex; } return bitSet; } /** * Finds the indices of the given value in the array starting at the given index. * *

* This method will return the indices of the values which fall between the region * defined by valueToFind - tolerance and valueToFind + tolerance, between the nearest integers. *

* *

* This method returns an empty BitSet for a {@code null} input array. *

* *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return an empty BitSet. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @param tolerance * tolerance of the search * @return a BitSet of the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final double[] array,final double valueToFind,int startIndex,final double tolerance){ final BitSet bitSet = new BitSet(); if (array == null){ return bitSet; } while (startIndex < array.length){ startIndex = indexOf(array, valueToFind, startIndex, tolerance); if (startIndex == INDEX_NOT_FOUND){ break; } bitSet.set(startIndex); ++startIndex; } return bitSet; } /** * Finds the indices of the given value in the array. * *

* This method returns an empty BitSet for a {@code null} input array. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return a BitSet of all the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final float[] array,final float valueToFind){ return indexesOf(array, valueToFind, 0); } /** * Finds the indices of the given value in the array starting at the given index. * *

* This method returns an empty BitSet for a {@code null} input array. *

* *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return empty BitSet. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return a BitSet of all the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final float[] array,final float valueToFind,int startIndex){ final BitSet bitSet = new BitSet(); if (array == null){ return bitSet; } while (startIndex < array.length){ startIndex = indexOf(array, valueToFind, startIndex); if (startIndex == INDEX_NOT_FOUND){ break; } bitSet.set(startIndex); ++startIndex; } return bitSet; } /** * Finds the indices of the given value in the array. * *

* This method returns an empty BitSet for a {@code null} input array. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return a BitSet of all the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final int[] array,final int valueToFind){ return indexesOf(array, valueToFind, 0); } /** * Finds the indices of the given value in the array starting at the given index. * *

* This method returns an empty BitSet for a {@code null} input array. *

* *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return an empty BitSet. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return a BitSet of all the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final int[] array,final int valueToFind,int startIndex){ final BitSet bitSet = new BitSet(); if (array == null){ return bitSet; } while (startIndex < array.length){ startIndex = indexOf(array, valueToFind, startIndex); if (startIndex == INDEX_NOT_FOUND){ break; } bitSet.set(startIndex); ++startIndex; } return bitSet; } /** * Finds the indices of the given value in the array. * *

* This method returns an empty BitSet for a {@code null} input array. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return a BitSet of all the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final long[] array,final long valueToFind){ return indexesOf(array, valueToFind, 0); } /** * Finds the indices of the given value in the array starting at the given index. * *

* This method returns an empty BitSet for a {@code null} input array. *

* *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return an empty BitSet. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return a BitSet of all the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final long[] array,final long valueToFind,int startIndex){ final BitSet bitSet = new BitSet(); if (array == null){ return bitSet; } while (startIndex < array.length){ startIndex = indexOf(array, valueToFind, startIndex); if (startIndex == INDEX_NOT_FOUND){ break; } bitSet.set(startIndex); ++startIndex; } return bitSet; } /** * Finds the indices of the given object in the array. * *

* This method returns an empty BitSet for a {@code null} input array. *

* * @param array * the array to search through for the object, may be {@code null} * @param objectToFind * the object to find, may be {@code null} * @return a BitSet of all the indices of the object within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final Object[] array,final Object objectToFind){ return indexesOf(array, objectToFind, 0); } /** * Finds the indices of the given object in the array starting at the given index. * *

* This method returns an empty BitSet for a {@code null} input array. *

* *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return an empty BitSet. *

* * @param array * the array to search through for the object, may be {@code null} * @param objectToFind * the object to find, may be {@code null} * @param startIndex * the index to start searching at * @return a BitSet of all the indices of the object within the array starting at the index, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final Object[] array,final Object objectToFind,int startIndex){ final BitSet bitSet = new BitSet(); if (array == null){ return bitSet; } while (startIndex < array.length){ startIndex = indexOf(array, objectToFind, startIndex); if (startIndex == INDEX_NOT_FOUND){ break; } bitSet.set(startIndex); ++startIndex; } return bitSet; } /** * Finds the indices of the given value in the array. * *

* This method returns an empty BitSet for a {@code null} input array. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return a BitSet of all the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final short[] array,final short valueToFind){ return indexesOf(array, valueToFind, 0); } /** * Finds the indices of the given value in the array starting at the given index. * *

* This method returns an empty BitSet for a {@code null} input array. *

* *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return an empty BitSet. *

* * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return a BitSet of all the indices of the value within the array, * an empty BitSet if not found or {@code null} array input * @since 3.10 */ public static BitSet indexesOf(final short[] array,final short valueToFind,int startIndex){ final BitSet bitSet = new BitSet(); if (array == null){ return bitSet; } while (startIndex < array.length){ startIndex = indexOf(array, valueToFind, startIndex); if (startIndex == INDEX_NOT_FOUND){ break; } bitSet.set(startIndex); ++startIndex; } return bitSet; } // boolean IndexOf //----------------------------------------------------------------------- /** *

* Finds the index of the given value in the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final boolean[] array,final boolean valueToFind){ return indexOf(array, valueToFind, 0); } /** *

* Finds the index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return {@link #INDEX_NOT_FOUND} ({@code -1}). * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} * array input */ public static int indexOf(final boolean[] array,final boolean valueToFind,int startIndex){ if (isEmpty(array)){ return INDEX_NOT_FOUND; } if (startIndex < 0){ startIndex = 0; } for (int i = startIndex; i < array.length; i++){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } // byte IndexOf //----------------------------------------------------------------------- /** *

* Finds the index of the given value in the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final byte[] array,final byte valueToFind){ return indexOf(array, valueToFind, 0); } /** *

* Finds the index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return {@link #INDEX_NOT_FOUND} ({@code -1}). * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final byte[] array,final byte valueToFind,int startIndex){ if (array == null){ return INDEX_NOT_FOUND; } if (startIndex < 0){ startIndex = 0; } for (int i = startIndex; i < array.length; i++){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } // char IndexOf //----------------------------------------------------------------------- /** *

* Finds the index of the given value in the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input * @since 2.1 */ public static int indexOf(final char[] array,final char valueToFind){ return indexOf(array, valueToFind, 0); } /** *

* Finds the index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return {@link #INDEX_NOT_FOUND} ({@code -1}). * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input * @since 2.1 */ public static int indexOf(final char[] array,final char valueToFind,int startIndex){ if (array == null){ return INDEX_NOT_FOUND; } if (startIndex < 0){ startIndex = 0; } for (int i = startIndex; i < array.length; i++){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } // double IndexOf //----------------------------------------------------------------------- /** *

* Finds the index of the given value in the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final double[] array,final double valueToFind){ return indexOf(array, valueToFind, 0); } /** *

* Finds the index of the given value within a given tolerance in the array. * This method will return the index of the first value which falls between the region * defined by valueToFind - tolerance and valueToFind + tolerance. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param tolerance * tolerance of the search * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final double[] array,final double valueToFind,final double tolerance){ return indexOf(array, valueToFind, 0, tolerance); } /** *

* Finds the index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return {@link #INDEX_NOT_FOUND} ({@code -1}). * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final double[] array,final double valueToFind,int startIndex){ if (isEmpty(array)){ return INDEX_NOT_FOUND; } if (startIndex < 0){ startIndex = 0; } for (int i = startIndex; i < array.length; i++){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } /** *

* Finds the index of the given value in the array starting at the given index. * This method will return the index of the first value which falls between the region * defined by valueToFind - tolerance and valueToFind + tolerance. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return {@link #INDEX_NOT_FOUND} ({@code -1}). * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @param tolerance * tolerance of the search * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final double[] array,final double valueToFind,int startIndex,final double tolerance){ if (isEmpty(array)){ return INDEX_NOT_FOUND; } if (startIndex < 0){ startIndex = 0; } final double min = valueToFind - tolerance; final double max = valueToFind + tolerance; for (int i = startIndex; i < array.length; i++){ if (array[i] >= min && array[i] <= max){ return i; } } return INDEX_NOT_FOUND; } // float IndexOf //----------------------------------------------------------------------- /** *

* Finds the index of the given value in the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final float[] array,final float valueToFind){ return indexOf(array, valueToFind, 0); } /** *

* Finds the index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return {@link #INDEX_NOT_FOUND} ({@code -1}). * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final float[] array,final float valueToFind,int startIndex){ if (isEmpty(array)){ return INDEX_NOT_FOUND; } if (startIndex < 0){ startIndex = 0; } for (int i = startIndex; i < array.length; i++){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } // int IndexOf //----------------------------------------------------------------------- /** *

* Finds the index of the given value in the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final int[] array,final int valueToFind){ return indexOf(array, valueToFind, 0); } /** *

* Finds the index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return {@link #INDEX_NOT_FOUND} ({@code -1}). * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final int[] array,final int valueToFind,int startIndex){ if (array == null){ return INDEX_NOT_FOUND; } if (startIndex < 0){ startIndex = 0; } for (int i = startIndex; i < array.length; i++){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } // long IndexOf //----------------------------------------------------------------------- /** *

* Finds the index of the given value in the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final long[] array,final long valueToFind){ return indexOf(array, valueToFind, 0); } /** *

* Finds the index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return {@link #INDEX_NOT_FOUND} ({@code -1}). * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final long[] array,final long valueToFind,int startIndex){ if (array == null){ return INDEX_NOT_FOUND; } if (startIndex < 0){ startIndex = 0; } for (int i = startIndex; i < array.length; i++){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } // Object IndexOf //----------------------------------------------------------------------- /** *

* Finds the index of the given object in the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to search through for the object, may be {@code null} * @param objectToFind * the object to find, may be {@code null} * @return the index of the object within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final Object[] array,final Object objectToFind){ return indexOf(array, objectToFind, 0); } /** *

* Finds the index of the given object in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return {@link #INDEX_NOT_FOUND} ({@code -1}). * * @param array * the array to search through for the object, may be {@code null} * @param objectToFind * the object to find, may be {@code null} * @param startIndex * the index to start searching at * @return the index of the object within the array starting at the index, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final Object[] array,final Object objectToFind,int startIndex){ if (array == null){ return INDEX_NOT_FOUND; } if (startIndex < 0){ startIndex = 0; } if (objectToFind == null){ for (int i = startIndex; i < array.length; i++){ if (array[i] == null){ return i; } } }else{ for (int i = startIndex; i < array.length; i++){ if (objectToFind.equals(array[i])){ return i; } } } return INDEX_NOT_FOUND; } // short IndexOf //----------------------------------------------------------------------- /** *

* Finds the index of the given value in the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final short[] array,final short valueToFind){ return indexOf(array, valueToFind, 0); } /** *

* Finds the index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex is treated as zero. A startIndex larger than the array * length will return {@link #INDEX_NOT_FOUND} ({@code -1}). * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the index to start searching at * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int indexOf(final short[] array,final short valueToFind,int startIndex){ if (array == null){ return INDEX_NOT_FOUND; } if (startIndex < 0){ startIndex = 0; } for (int i = startIndex; i < array.length; i++){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } /** *

* Inserts elements into an array at the given index (starting from zero). *

* *

* When an array is returned, it is always a new array. *

* *
     * ArrayUtils.insert(index, null, null)      = null
     * ArrayUtils.insert(index, array, null)     = cloned copy of 'array'
     * ArrayUtils.insert(index, null, values)    = null
     * 
* * @param index * the position within {@code array} to insert the new values * @param array * the array to insert the values into, may be {@code null} * @param values * the new values to insert, may be {@code null} * @return The new array. * @throws IndexOutOfBoundsException * if {@code array} is provided * and either {@code index < 0} or {@code index > array.length} * @since 3.6 */ public static boolean[] insert(final int index,final boolean[] array,final boolean...values){ if (array == null){ return null; } if (ArrayUtils.isEmpty(values)){ return clone(array); } if (index < 0 || index > array.length){ throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length); } final boolean[] result = new boolean[array.length + values.length]; System.arraycopy(values, 0, result, index, values.length); if (index > 0){ System.arraycopy(array, 0, result, 0, index); } if (index < array.length){ System.arraycopy(array, index, result, index + values.length, array.length - index); } return result; } /** *

* Inserts elements into an array at the given index (starting from zero). *

* *

* When an array is returned, it is always a new array. *

* *
     * ArrayUtils.insert(index, null, null)      = null
     * ArrayUtils.insert(index, array, null)     = cloned copy of 'array'
     * ArrayUtils.insert(index, null, values)    = null
     * 
* * @param index * the position within {@code array} to insert the new values * @param array * the array to insert the values into, may be {@code null} * @param values * the new values to insert, may be {@code null} * @return The new array. * @throws IndexOutOfBoundsException * if {@code array} is provided * and either {@code index < 0} or {@code index > array.length} * @since 3.6 */ public static byte[] insert(final int index,final byte[] array,final byte...values){ if (array == null){ return null; } if (ArrayUtils.isEmpty(values)){ return clone(array); } if (index < 0 || index > array.length){ throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length); } final byte[] result = new byte[array.length + values.length]; System.arraycopy(values, 0, result, index, values.length); if (index > 0){ System.arraycopy(array, 0, result, 0, index); } if (index < array.length){ System.arraycopy(array, index, result, index + values.length, array.length - index); } return result; } /** *

* Inserts elements into an array at the given index (starting from zero). *

* *

* When an array is returned, it is always a new array. *

* *
     * ArrayUtils.insert(index, null, null)      = null
     * ArrayUtils.insert(index, array, null)     = cloned copy of 'array'
     * ArrayUtils.insert(index, null, values)    = null
     * 
* * @param index * the position within {@code array} to insert the new values * @param array * the array to insert the values into, may be {@code null} * @param values * the new values to insert, may be {@code null} * @return The new array. * @throws IndexOutOfBoundsException * if {@code array} is provided * and either {@code index < 0} or {@code index > array.length} * @since 3.6 */ public static char[] insert(final int index,final char[] array,final char...values){ if (array == null){ return null; } if (ArrayUtils.isEmpty(values)){ return clone(array); } if (index < 0 || index > array.length){ throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length); } final char[] result = new char[array.length + values.length]; System.arraycopy(values, 0, result, index, values.length); if (index > 0){ System.arraycopy(array, 0, result, 0, index); } if (index < array.length){ System.arraycopy(array, index, result, index + values.length, array.length - index); } return result; } /** *

* Inserts elements into an array at the given index (starting from zero). *

* *

* When an array is returned, it is always a new array. *

* *
     * ArrayUtils.insert(index, null, null)      = null
     * ArrayUtils.insert(index, array, null)     = cloned copy of 'array'
     * ArrayUtils.insert(index, null, values)    = null
     * 
* * @param index * the position within {@code array} to insert the new values * @param array * the array to insert the values into, may be {@code null} * @param values * the new values to insert, may be {@code null} * @return The new array. * @throws IndexOutOfBoundsException * if {@code array} is provided * and either {@code index < 0} or {@code index > array.length} * @since 3.6 */ public static double[] insert(final int index,final double[] array,final double...values){ if (array == null){ return null; } if (ArrayUtils.isEmpty(values)){ return clone(array); } if (index < 0 || index > array.length){ throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length); } final double[] result = new double[array.length + values.length]; System.arraycopy(values, 0, result, index, values.length); if (index > 0){ System.arraycopy(array, 0, result, 0, index); } if (index < array.length){ System.arraycopy(array, index, result, index + values.length, array.length - index); } return result; } /** *

* Inserts elements into an array at the given index (starting from zero). *

* *

* When an array is returned, it is always a new array. *

* *
     * ArrayUtils.insert(index, null, null)      = null
     * ArrayUtils.insert(index, array, null)     = cloned copy of 'array'
     * ArrayUtils.insert(index, null, values)    = null
     * 
* * @param index * the position within {@code array} to insert the new values * @param array * the array to insert the values into, may be {@code null} * @param values * the new values to insert, may be {@code null} * @return The new array. * @throws IndexOutOfBoundsException * if {@code array} is provided * and either {@code index < 0} or {@code index > array.length} * @since 3.6 */ public static float[] insert(final int index,final float[] array,final float...values){ if (array == null){ return null; } if (ArrayUtils.isEmpty(values)){ return clone(array); } if (index < 0 || index > array.length){ throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length); } final float[] result = new float[array.length + values.length]; System.arraycopy(values, 0, result, index, values.length); if (index > 0){ System.arraycopy(array, 0, result, 0, index); } if (index < array.length){ System.arraycopy(array, index, result, index + values.length, array.length - index); } return result; } /** *

* Inserts elements into an array at the given index (starting from zero). *

* *

* When an array is returned, it is always a new array. *

* *
     * ArrayUtils.insert(index, null, null)      = null
     * ArrayUtils.insert(index, array, null)     = cloned copy of 'array'
     * ArrayUtils.insert(index, null, values)    = null
     * 
* * @param index * the position within {@code array} to insert the new values * @param array * the array to insert the values into, may be {@code null} * @param values * the new values to insert, may be {@code null} * @return The new array. * @throws IndexOutOfBoundsException * if {@code array} is provided * and either {@code index < 0} or {@code index > array.length} * @since 3.6 */ public static int[] insert(final int index,final int[] array,final int...values){ if (array == null){ return null; } if (ArrayUtils.isEmpty(values)){ return clone(array); } if (index < 0 || index > array.length){ throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length); } final int[] result = new int[array.length + values.length]; System.arraycopy(values, 0, result, index, values.length); if (index > 0){ System.arraycopy(array, 0, result, 0, index); } if (index < array.length){ System.arraycopy(array, index, result, index + values.length, array.length - index); } return result; } /** *

* Inserts elements into an array at the given index (starting from zero). *

* *

* When an array is returned, it is always a new array. *

* *
     * ArrayUtils.insert(index, null, null)      = null
     * ArrayUtils.insert(index, array, null)     = cloned copy of 'array'
     * ArrayUtils.insert(index, null, values)    = null
     * 
* * @param index * the position within {@code array} to insert the new values * @param array * the array to insert the values into, may be {@code null} * @param values * the new values to insert, may be {@code null} * @return The new array. * @throws IndexOutOfBoundsException * if {@code array} is provided * and either {@code index < 0} or {@code index > array.length} * @since 3.6 */ public static long[] insert(final int index,final long[] array,final long...values){ if (array == null){ return null; } if (ArrayUtils.isEmpty(values)){ return clone(array); } if (index < 0 || index > array.length){ throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length); } final long[] result = new long[array.length + values.length]; System.arraycopy(values, 0, result, index, values.length); if (index > 0){ System.arraycopy(array, 0, result, 0, index); } if (index < array.length){ System.arraycopy(array, index, result, index + values.length, array.length - index); } return result; } /** *

* Inserts elements into an array at the given index (starting from zero). *

* *

* When an array is returned, it is always a new array. *

* *
     * ArrayUtils.insert(index, null, null)      = null
     * ArrayUtils.insert(index, array, null)     = cloned copy of 'array'
     * ArrayUtils.insert(index, null, values)    = null
     * 
* * @param index * the position within {@code array} to insert the new values * @param array * the array to insert the values into, may be {@code null} * @param values * the new values to insert, may be {@code null} * @return The new array. * @throws IndexOutOfBoundsException * if {@code array} is provided * and either {@code index < 0} or {@code index > array.length} * @since 3.6 */ public static short[] insert(final int index,final short[] array,final short...values){ if (array == null){ return null; } if (ArrayUtils.isEmpty(values)){ return clone(array); } if (index < 0 || index > array.length){ throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length); } final short[] result = new short[array.length + values.length]; System.arraycopy(values, 0, result, index, values.length); if (index > 0){ System.arraycopy(array, 0, result, 0, index); } if (index < array.length){ System.arraycopy(array, index, result, index + values.length, array.length - index); } return result; } /** *

* Inserts elements into an array at the given index (starting from zero). *

* *

* When an array is returned, it is always a new array. *

* *
     * ArrayUtils.insert(index, null, null)      = null
     * ArrayUtils.insert(index, array, null)     = cloned copy of 'array'
     * ArrayUtils.insert(index, null, values)    = null
     * 
* * @param * The type of elements in {@code array} and {@code values} * @param index * the position within {@code array} to insert the new values * @param array * the array to insert the values into, may be {@code null} * @param values * the new values to insert, may be {@code null} * @return The new array. * @throws IndexOutOfBoundsException * if {@code array} is provided * and either {@code index < 0} or {@code index > array.length} * @since 3.6 */ @SafeVarargs public static T[] insert(final int index,final T[] array,final T...values){ /* * Note on use of @SafeVarargs: * * By returning null when 'array' is null, we avoid returning the vararg * array to the caller. We also avoid relying on the type of the vararg * array, by inspecting the component type of 'array'. */ if (array == null){ return null; } if (ArrayUtils.isEmpty(values)){ return clone(array); } if (index < 0 || index > array.length){ throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length); } final Class type = array.getClass().getComponentType(); @SuppressWarnings("unchecked") // OK, because array and values are of type T final T[] result = (T[]) Array.newInstance(type, array.length + values.length); System.arraycopy(values, 0, result, index, values.length); if (index > 0){ System.arraycopy(array, 0, result, 0, index); } if (index < array.length){ System.arraycopy(array, index, result, index + values.length, array.length - index); } return result; } /** * Returns whether a given array can safely be accessed at the given index. * * @param * the component type of the array * @param array * the array to inspect, may be null * @param index * the index of the array to be inspected * @return Whether the given index is safely-accessible in the given array * @since 3.8 */ public static boolean isArrayIndexValid(final T[] array,final int index){ if (getLength(array) == 0 || array.length <= index){ return false; } return index >= 0; } /** *

* Checks if an array of primitive booleans is empty or {@code null}. * * @param array * the array to test * @return {@code true} if the array is empty or {@code null} * @since 2.1 */ public static boolean isEmpty(final boolean[] array){ return getLength(array) == 0; } // IndexOf search // ---------------------------------------------------------------------- /** *

* Checks if an array of primitive bytes is empty or {@code null}. * * @param array * the array to test * @return {@code true} if the array is empty or {@code null} * @since 2.1 */ public static boolean isEmpty(final byte[] array){ return getLength(array) == 0; } /** *

* Checks if an array of primitive chars is empty or {@code null}. * * @param array * the array to test * @return {@code true} if the array is empty or {@code null} * @since 2.1 */ public static boolean isEmpty(final char[] array){ return getLength(array) == 0; } /** *

* Checks if an array of primitive doubles is empty or {@code null}. * * @param array * the array to test * @return {@code true} if the array is empty or {@code null} * @since 2.1 */ public static boolean isEmpty(final double[] array){ return getLength(array) == 0; } /** *

* Checks if an array of primitive floats is empty or {@code null}. * * @param array * the array to test * @return {@code true} if the array is empty or {@code null} * @since 2.1 */ public static boolean isEmpty(final float[] array){ return getLength(array) == 0; } /** *

* Checks if an array of primitive ints is empty or {@code null}. * * @param array * the array to test * @return {@code true} if the array is empty or {@code null} * @since 2.1 */ public static boolean isEmpty(final int[] array){ return getLength(array) == 0; } /** *

* Checks if an array of primitive longs is empty or {@code null}. * * @param array * the array to test * @return {@code true} if the array is empty or {@code null} * @since 2.1 */ public static boolean isEmpty(final long[] array){ return getLength(array) == 0; } // ---------------------------------------------------------------------- /** *

* Checks if an array of Objects is empty or {@code null}. * * @param array * the array to test * @return {@code true} if the array is empty or {@code null} * @since 2.1 */ public static boolean isEmpty(final Object[] array){ return getLength(array) == 0; } /** *

* Checks if an array of primitive shorts is empty or {@code null}. * * @param array * the array to test * @return {@code true} if the array is empty or {@code null} * @since 2.1 */ public static boolean isEmpty(final short[] array){ return getLength(array) == 0; } /** *

* Compares two arrays, using equals(), handling multi-dimensional arrays * correctly. * *

* Multi-dimensional primitive arrays are also handled correctly by this method. * * @param array1 * the left hand array to compare, may be {@code null} * @param array2 * the right hand array to compare, may be {@code null} * @return {@code true} if the arrays are equal * @deprecated this method has been replaced by {@code java.util.Objects.deepEquals(Object, Object)} and will be * removed from future releases. */ @Deprecated public static boolean isEquals(final Object array1,final Object array2){ return new EqualsBuilder().append(array1, array2).isEquals(); } /** *

* Checks if an array of primitive booleans is not empty and not {@code null}. * * @param array * the array to test * @return {@code true} if the array is not empty and not {@code null} * @since 2.5 */ public static boolean isNotEmpty(final boolean[] array){ return !isEmpty(array); } /** *

* Checks if an array of primitive bytes is not empty and not {@code null}. * * @param array * the array to test * @return {@code true} if the array is not empty and not {@code null} * @since 2.5 */ public static boolean isNotEmpty(final byte[] array){ return !isEmpty(array); } /** *

* Checks if an array of primitive chars is not empty and not {@code null}. * * @param array * the array to test * @return {@code true} if the array is not empty and not {@code null} * @since 2.5 */ public static boolean isNotEmpty(final char[] array){ return !isEmpty(array); } /** *

* Checks if an array of primitive doubles is not empty and not {@code null}. * * @param array * the array to test * @return {@code true} if the array is not empty and not {@code null} * @since 2.5 */ public static boolean isNotEmpty(final double[] array){ return !isEmpty(array); } /** *

* Checks if an array of primitive floats is not empty and not {@code null}. * * @param array * the array to test * @return {@code true} if the array is not empty and not {@code null} * @since 2.5 */ public static boolean isNotEmpty(final float[] array){ return !isEmpty(array); } /** *

* Checks if an array of primitive ints is not empty and not {@code null}. * * @param array * the array to test * @return {@code true} if the array is not empty and not {@code null} * @since 2.5 */ public static boolean isNotEmpty(final int[] array){ return !isEmpty(array); } /** *

* Checks if an array of primitive longs is not empty and not {@code null}. * * @param array * the array to test * @return {@code true} if the array is not empty and not {@code null} * @since 2.5 */ public static boolean isNotEmpty(final long[] array){ return !isEmpty(array); } /** *

* Checks if an array of primitive shorts is not empty and not {@code null}. * * @param array * the array to test * @return {@code true} if the array is not empty and not {@code null} * @since 2.5 */ public static boolean isNotEmpty(final short[] array){ return !isEmpty(array); } // ---------------------------------------------------------------------- /** *

* Checks if an array of Objects is not empty and not {@code null}. * * @param * the component type of the array * @param array * the array to test * @return {@code true} if the array is not empty and not {@code null} * @since 2.5 */ public static boolean isNotEmpty(final T[] array){ return !isEmpty(array); } /** *

* Checks whether two arrays are the same length, treating * {@code null} arrays as length {@code 0}. * * @param array1 * the first array, may be {@code null} * @param array2 * the second array, may be {@code null} * @return {@code true} if length of arrays matches, treating * {@code null} as an empty array */ public static boolean isSameLength(final boolean[] array1,final boolean[] array2){ return getLength(array1) == getLength(array2); } /** *

* Checks whether two arrays are the same length, treating * {@code null} arrays as length {@code 0}. * * @param array1 * the first array, may be {@code null} * @param array2 * the second array, may be {@code null} * @return {@code true} if length of arrays matches, treating * {@code null} as an empty array */ public static boolean isSameLength(final byte[] array1,final byte[] array2){ return getLength(array1) == getLength(array2); } /** *

* Checks whether two arrays are the same length, treating * {@code null} arrays as length {@code 0}. * * @param array1 * the first array, may be {@code null} * @param array2 * the second array, may be {@code null} * @return {@code true} if length of arrays matches, treating * {@code null} as an empty array */ public static boolean isSameLength(final char[] array1,final char[] array2){ return getLength(array1) == getLength(array2); } /** *

* Checks whether two arrays are the same length, treating * {@code null} arrays as length {@code 0}. * * @param array1 * the first array, may be {@code null} * @param array2 * the second array, may be {@code null} * @return {@code true} if length of arrays matches, treating * {@code null} as an empty array */ public static boolean isSameLength(final double[] array1,final double[] array2){ return getLength(array1) == getLength(array2); } /** *

* Checks whether two arrays are the same length, treating * {@code null} arrays as length {@code 0}. * * @param array1 * the first array, may be {@code null} * @param array2 * the second array, may be {@code null} * @return {@code true} if length of arrays matches, treating * {@code null} as an empty array */ public static boolean isSameLength(final float[] array1,final float[] array2){ return getLength(array1) == getLength(array2); } /** *

* Checks whether two arrays are the same length, treating * {@code null} arrays as length {@code 0}. * * @param array1 * the first array, may be {@code null} * @param array2 * the second array, may be {@code null} * @return {@code true} if length of arrays matches, treating * {@code null} as an empty array */ public static boolean isSameLength(final int[] array1,final int[] array2){ return getLength(array1) == getLength(array2); } /** *

* Checks whether two arrays are the same length, treating * {@code null} arrays as length {@code 0}. * * @param array1 * the first array, may be {@code null} * @param array2 * the second array, may be {@code null} * @return {@code true} if length of arrays matches, treating * {@code null} as an empty array */ public static boolean isSameLength(final long[] array1,final long[] array2){ return getLength(array1) == getLength(array2); } // Is same length //----------------------------------------------------------------------- /** *

* Checks whether two arrays are the same length, treating * {@code null} arrays as length {@code 0}. * *

* Any multi-dimensional aspects of the arrays are ignored. * * @param array1 * the first array, may be {@code null} * @param array2 * the second array, may be {@code null} * @return {@code true} if length of arrays matches, treating * {@code null} as an empty array */ public static boolean isSameLength(final Object[] array1,final Object[] array2){ return getLength(array1) == getLength(array2); } /** *

* Checks whether two arrays are the same length, treating * {@code null} arrays as length {@code 0}. * * @param array1 * the first array, may be {@code null} * @param array2 * the second array, may be {@code null} * @return {@code true} if length of arrays matches, treating * {@code null} as an empty array */ public static boolean isSameLength(final short[] array1,final short[] array2){ return getLength(array1) == getLength(array2); } /** *

* Checks whether two arrays are the same type taking into account * multi-dimensional arrays. * * @param array1 * the first array, must not be {@code null} * @param array2 * the second array, must not be {@code null} * @return {@code true} if type of arrays matches * @throws IllegalArgumentException * if either array is {@code null} */ public static boolean isSameType(final Object array1,final Object array2){ if (array1 == null || array2 == null){ throw new IllegalArgumentException("The Array must not be null"); } return array1.getClass().getName().equals(array2.getClass().getName()); } /** *

* This method checks whether the provided array is sorted according to natural ordering * ({@code false} before {@code true}). * * @param array * the array to check * @return whether the array is sorted according to natural ordering * @since 3.4 */ public static boolean isSorted(final boolean[] array){ if (array == null || array.length < 2){ return true; } boolean previous = array[0]; final int n = array.length; for (int i = 1; i < n; i++){ final boolean current = array[i]; if (BooleanUtils.compare(previous, current) > 0){ return false; } previous = current; } return true; } /** *

* This method checks whether the provided array is sorted according to natural ordering. * * @param array * the array to check * @return whether the array is sorted according to natural ordering * @since 3.4 */ public static boolean isSorted(final double[] array){ if (array == null || array.length < 2){ return true; } double previous = array[0]; final int n = array.length; for (int i = 1; i < n; i++){ final double current = array[i]; if (Double.compare(previous, current) > 0){ return false; } previous = current; } return true; } /** *

* This method checks whether the provided array is sorted according to natural ordering. * * @param array * the array to check * @return whether the array is sorted according to natural ordering * @since 3.4 */ public static boolean isSorted(final float[] array){ if (array == null || array.length < 2){ return true; } float previous = array[0]; final int n = array.length; for (int i = 1; i < n; i++){ final float current = array[i]; if (Float.compare(previous, current) > 0){ return false; } previous = current; } return true; } /** *

* This method checks whether the provided array is sorted according to natural ordering. * * @param array * the array to check * @return whether the array is sorted according to natural ordering * @since 3.4 */ public static boolean isSorted(final int[] array){ if (array == null || array.length < 2){ return true; } int previous = array[0]; final int n = array.length; for (int i = 1; i < n; i++){ final int current = array[i]; if (NumberUtils.compare(previous, current) > 0){ return false; } previous = current; } return true; } /** *

* This method checks whether the provided array is sorted according to natural ordering. * * @param array * the array to check * @return whether the array is sorted according to natural ordering * @since 3.4 */ public static boolean isSorted(final long[] array){ if (array == null || array.length < 2){ return true; } long previous = array[0]; final int n = array.length; for (int i = 1; i < n; i++){ final long current = array[i]; if (NumberUtils.compare(previous, current) > 0){ return false; } previous = current; } return true; } /** *

* This method checks whether the provided array is sorted according to natural ordering. * * @param array * the array to check * @return whether the array is sorted according to natural ordering * @since 3.4 */ public static boolean isSorted(final short[] array){ if (array == null || array.length < 2){ return true; } short previous = array[0]; final int n = array.length; for (int i = 1; i < n; i++){ final short current = array[i]; if (NumberUtils.compare(previous, current) > 0){ return false; } previous = current; } return true; } /** *

* This method checks whether the provided array is sorted according to the class's * {@code compareTo} method. * * @param array * the array to check * @param * the datatype of the array to check, it must implement {@code Comparable} * @return whether the array is sorted * @since 3.4 */ public static > boolean isSorted(final T[] array){ return isSorted(array, (o1,o2) -> o1.compareTo(o2)); } /** *

* This method checks whether the provided array is sorted according to the provided {@code Comparator}. * * @param array * the array to check * @param comparator * the {@code Comparator} to compare over * @param * the datatype of the array * @return whether the array is sorted * @since 3.4 */ public static boolean isSorted(final T[] array,final Comparator comparator){ if (comparator == null){ throw new IllegalArgumentException("Comparator should not be null."); } if (array == null || array.length < 2){ return true; } T previous = array[0]; final int n = array.length; for (int i = 1; i < n; i++){ final T current = array[i]; if (comparator.compare(previous, current) > 0){ return false; } previous = current; } return true; } /** *

* Finds the last index of the given value within the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) if * {@code null} array input. * * @param array * the array to traverse backwards looking for the object, may be {@code null} * @param valueToFind * the object to find * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final boolean[] array,final boolean valueToFind){ return lastIndexOf(array, valueToFind, Integer.MAX_VALUE); } /** *

* Finds the last index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than * the array length will search from the end of the array. * * @param array * the array to traverse for looking for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the start index to traverse backwards from * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final boolean[] array,final boolean valueToFind,int startIndex){ if (isEmpty(array)){ return INDEX_NOT_FOUND; } if (startIndex < 0){ return INDEX_NOT_FOUND; }else if (startIndex >= array.length){ startIndex = array.length - 1; } for (int i = startIndex; i >= 0; i--){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } /** *

* Finds the last index of the given value within the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to traverse backwards looking for the object, may be {@code null} * @param valueToFind * the object to find * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final byte[] array,final byte valueToFind){ return lastIndexOf(array, valueToFind, Integer.MAX_VALUE); } /** *

* Finds the last index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the * array length will search from the end of the array. * * @param array * the array to traverse for looking for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the start index to traverse backwards from * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final byte[] array,final byte valueToFind,int startIndex){ if (array == null){ return INDEX_NOT_FOUND; } if (startIndex < 0){ return INDEX_NOT_FOUND; }else if (startIndex >= array.length){ startIndex = array.length - 1; } for (int i = startIndex; i >= 0; i--){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } /** *

* Finds the last index of the given value within the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to traverse backwards looking for the object, may be {@code null} * @param valueToFind * the object to find * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input * @since 2.1 */ public static int lastIndexOf(final char[] array,final char valueToFind){ return lastIndexOf(array, valueToFind, Integer.MAX_VALUE); } /** *

* Finds the last index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the * array length will search from the end of the array. * * @param array * the array to traverse for looking for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the start index to traverse backwards from * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input * @since 2.1 */ public static int lastIndexOf(final char[] array,final char valueToFind,int startIndex){ if (array == null){ return INDEX_NOT_FOUND; } if (startIndex < 0){ return INDEX_NOT_FOUND; }else if (startIndex >= array.length){ startIndex = array.length - 1; } for (int i = startIndex; i >= 0; i--){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } /** *

* Finds the last index of the given value within the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to traverse backwards looking for the object, may be {@code null} * @param valueToFind * the object to find * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final double[] array,final double valueToFind){ return lastIndexOf(array, valueToFind, Integer.MAX_VALUE); } /** *

* Finds the last index of the given value within a given tolerance in the array. * This method will return the index of the last value which falls between the region * defined by valueToFind - tolerance and valueToFind + tolerance. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to search through for the object, may be {@code null} * @param valueToFind * the value to find * @param tolerance * tolerance of the search * @return the index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final double[] array,final double valueToFind,final double tolerance){ return lastIndexOf(array, valueToFind, Integer.MAX_VALUE, tolerance); } /** *

* Finds the last index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the * array length will search from the end of the array. * * @param array * the array to traverse for looking for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the start index to traverse backwards from * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final double[] array,final double valueToFind,int startIndex){ if (isEmpty(array)){ return INDEX_NOT_FOUND; } if (startIndex < 0){ return INDEX_NOT_FOUND; }else if (startIndex >= array.length){ startIndex = array.length - 1; } for (int i = startIndex; i >= 0; i--){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } /** *

* Finds the last index of the given value in the array starting at the given index. * This method will return the index of the last value which falls between the region * defined by valueToFind - tolerance and valueToFind + tolerance. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the * array length will search from the end of the array. * * @param array * the array to traverse for looking for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the start index to traverse backwards from * @param tolerance * search for value within plus/minus this amount * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final double[] array,final double valueToFind,int startIndex,final double tolerance){ if (isEmpty(array)){ return INDEX_NOT_FOUND; } if (startIndex < 0){ return INDEX_NOT_FOUND; }else if (startIndex >= array.length){ startIndex = array.length - 1; } final double min = valueToFind - tolerance; final double max = valueToFind + tolerance; for (int i = startIndex; i >= 0; i--){ if (array[i] >= min && array[i] <= max){ return i; } } return INDEX_NOT_FOUND; } /** *

* Finds the last index of the given value within the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to traverse backwards looking for the object, may be {@code null} * @param valueToFind * the object to find * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final float[] array,final float valueToFind){ return lastIndexOf(array, valueToFind, Integer.MAX_VALUE); } /** *

* Finds the last index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the * array length will search from the end of the array. * * @param array * the array to traverse for looking for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the start index to traverse backwards from * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final float[] array,final float valueToFind,int startIndex){ if (isEmpty(array)){ return INDEX_NOT_FOUND; } if (startIndex < 0){ return INDEX_NOT_FOUND; }else if (startIndex >= array.length){ startIndex = array.length - 1; } for (int i = startIndex; i >= 0; i--){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } /** *

* Finds the last index of the given value within the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to traverse backwards looking for the object, may be {@code null} * @param valueToFind * the object to find * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final int[] array,final int valueToFind){ return lastIndexOf(array, valueToFind, Integer.MAX_VALUE); } /** *

* Finds the last index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the * array length will search from the end of the array. * * @param array * the array to traverse for looking for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the start index to traverse backwards from * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final int[] array,final int valueToFind,int startIndex){ if (array == null){ return INDEX_NOT_FOUND; } if (startIndex < 0){ return INDEX_NOT_FOUND; }else if (startIndex >= array.length){ startIndex = array.length - 1; } for (int i = startIndex; i >= 0; i--){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } /** *

* Finds the last index of the given value within the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to traverse backwards looking for the object, may be {@code null} * @param valueToFind * the object to find * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final long[] array,final long valueToFind){ return lastIndexOf(array, valueToFind, Integer.MAX_VALUE); } /** *

* Finds the last index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the * array length will search from the end of the array. * * @param array * the array to traverse for looking for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the start index to traverse backwards from * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final long[] array,final long valueToFind,int startIndex){ if (array == null){ return INDEX_NOT_FOUND; } if (startIndex < 0){ return INDEX_NOT_FOUND; }else if (startIndex >= array.length){ startIndex = array.length - 1; } for (int i = startIndex; i >= 0; i--){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } /** *

* Finds the last index of the given object within the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to traverse backwards looking for the object, may be {@code null} * @param objectToFind * the object to find, may be {@code null} * @return the last index of the object within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final Object[] array,final Object objectToFind){ return lastIndexOf(array, objectToFind, Integer.MAX_VALUE); } /** *

* Finds the last index of the given object in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than * the array length will search from the end of the array. * * @param array * the array to traverse for looking for the object, may be {@code null} * @param objectToFind * the object to find, may be {@code null} * @param startIndex * the start index to traverse backwards from * @return the last index of the object within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final Object[] array,final Object objectToFind,int startIndex){ if (array == null){ return INDEX_NOT_FOUND; } if (startIndex < 0){ return INDEX_NOT_FOUND; }else if (startIndex >= array.length){ startIndex = array.length - 1; } if (objectToFind == null){ for (int i = startIndex; i >= 0; i--){ if (array[i] == null){ return i; } } }else if (array.getClass().getComponentType().isInstance(objectToFind)){ for (int i = startIndex; i >= 0; i--){ if (objectToFind.equals(array[i])){ return i; } } } return INDEX_NOT_FOUND; } /** *

* Finds the last index of the given value within the array. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * * @param array * the array to traverse backwards looking for the object, may be {@code null} * @param valueToFind * the object to find * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final short[] array,final short valueToFind){ return lastIndexOf(array, valueToFind, Integer.MAX_VALUE); } /** *

* Finds the last index of the given value in the array starting at the given index. * *

* This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array. * *

* A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the * array length will search from the end of the array. * * @param array * the array to traverse for looking for the object, may be {@code null} * @param valueToFind * the value to find * @param startIndex * the start index to traverse backwards from * @return the last index of the value within the array, * {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input */ public static int lastIndexOf(final short[] array,final short valueToFind,int startIndex){ if (array == null){ return INDEX_NOT_FOUND; } if (startIndex < 0){ return INDEX_NOT_FOUND; }else if (startIndex >= array.length){ startIndex = array.length - 1; } for (int i = startIndex; i >= 0; i--){ if (valueToFind == array[i]){ return i; } } return INDEX_NOT_FOUND; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static boolean[] nullToEmpty(final boolean[] array){ if (isEmpty(array)){ return EMPTY_BOOLEAN_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static Boolean[] nullToEmpty(final Boolean[] array){ if (isEmpty(array)){ return EMPTY_BOOLEAN_OBJECT_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static byte[] nullToEmpty(final byte[] array){ if (isEmpty(array)){ return EMPTY_BYTE_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static Byte[] nullToEmpty(final Byte[] array){ if (isEmpty(array)){ return EMPTY_BYTE_OBJECT_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static char[] nullToEmpty(final char[] array){ if (isEmpty(array)){ return EMPTY_CHAR_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static Character[] nullToEmpty(final Character[] array){ if (isEmpty(array)){ return EMPTY_CHARACTER_OBJECT_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 3.2 */ public static Class[] nullToEmpty(final Class[] array){ if (isEmpty(array)){ return EMPTY_CLASS_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static double[] nullToEmpty(final double[] array){ if (isEmpty(array)){ return EMPTY_DOUBLE_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static Double[] nullToEmpty(final Double[] array){ if (isEmpty(array)){ return EMPTY_DOUBLE_OBJECT_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static float[] nullToEmpty(final float[] array){ if (isEmpty(array)){ return EMPTY_FLOAT_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static Float[] nullToEmpty(final Float[] array){ if (isEmpty(array)){ return EMPTY_FLOAT_OBJECT_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static int[] nullToEmpty(final int[] array){ if (isEmpty(array)){ return EMPTY_INT_ARRAY; } return array; } // Primitive/Object array converters // ---------------------------------------------------------------------- /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static Integer[] nullToEmpty(final Integer[] array){ if (isEmpty(array)){ return EMPTY_INTEGER_OBJECT_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static long[] nullToEmpty(final long[] array){ if (isEmpty(array)){ return EMPTY_LONG_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static Long[] nullToEmpty(final Long[] array){ if (isEmpty(array)){ return EMPTY_LONG_OBJECT_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static Object[] nullToEmpty(final Object[] array){ if (isEmpty(array)){ return EMPTY_OBJECT_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static short[] nullToEmpty(final short[] array){ if (isEmpty(array)){ return EMPTY_SHORT_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static Short[] nullToEmpty(final Short[] array){ if (isEmpty(array)){ return EMPTY_SHORT_OBJECT_ARRAY; } return array; } /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * *

* As a memory optimizing technique an empty array passed in will be overridden with * the empty {@code public static} references in this class. * * @param array * the array to check for {@code null} or empty * @return the same array, {@code public static} empty array if {@code null} or empty input * @since 2.5 */ public static String[] nullToEmpty(final String[] array){ if (isEmpty(array)){ return EMPTY_STRING_ARRAY; } return array; } // nullToEmpty //----------------------------------------------------------------------- /** *

* Defensive programming technique to change a {@code null} * reference to an empty one. * *

* This method returns an empty array for a {@code null} input array. * * @param array * the array to check for {@code null} or empty * @param type * the class representation of the desired array * @param * the class type * @return the same array, {@code public static} empty array if {@code null} * @throws IllegalArgumentException * if the type argument is null * @since 3.5 */ public static T[] nullToEmpty(final T[] array,final Class type){ if (type == null){ throw new IllegalArgumentException("The type must not be null"); } if (array == null){ return type.cast(Array.newInstance(type.getComponentType(), 0)); } return array; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from * their indices). * *

* This method returns a new array with the same elements of the input * array except the element on the specified position. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.remove([true], 0)              = []
     * ArrayUtils.remove([true, false], 0)       = [false]
     * ArrayUtils.remove([true, false], 1)       = [true]
     * ArrayUtils.remove([true, true, false], 1) = [true, false]
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. * @throws IndexOutOfBoundsException * if the index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 2.1 */ public static boolean[] remove(final boolean[] array,final int index){ return (boolean[]) remove((Object) array, index); } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from * their indices). * *

* This method returns a new array with the same elements of the input * array except the element on the specified position. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.remove([1], 0)          = []
     * ArrayUtils.remove([1, 0], 0)       = [0]
     * ArrayUtils.remove([1, 0], 1)       = [1]
     * ArrayUtils.remove([1, 0, 1], 1)    = [1, 1]
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. * @throws IndexOutOfBoundsException * if the index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 2.1 */ public static byte[] remove(final byte[] array,final int index){ return (byte[]) remove((Object) array, index); } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from * their indices). * *

* This method returns a new array with the same elements of the input * array except the element on the specified position. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.remove(['a'], 0)           = []
     * ArrayUtils.remove(['a', 'b'], 0)      = ['b']
     * ArrayUtils.remove(['a', 'b'], 1)      = ['a']
     * ArrayUtils.remove(['a', 'b', 'c'], 1) = ['a', 'c']
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. * @throws IndexOutOfBoundsException * if the index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 2.1 */ public static char[] remove(final char[] array,final int index){ return (char[]) remove((Object) array, index); } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from * their indices). * *

* This method returns a new array with the same elements of the input * array except the element on the specified position. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.remove([1.1], 0)           = []
     * ArrayUtils.remove([2.5, 6.0], 0)      = [6.0]
     * ArrayUtils.remove([2.5, 6.0], 1)      = [2.5]
     * ArrayUtils.remove([2.5, 6.0, 3.8], 1) = [2.5, 3.8]
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. * @throws IndexOutOfBoundsException * if the index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 2.1 */ public static double[] remove(final double[] array,final int index){ return (double[]) remove((Object) array, index); } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from * their indices). * *

* This method returns a new array with the same elements of the input * array except the element on the specified position. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.remove([1.1], 0)           = []
     * ArrayUtils.remove([2.5, 6.0], 0)      = [6.0]
     * ArrayUtils.remove([2.5, 6.0], 1)      = [2.5]
     * ArrayUtils.remove([2.5, 6.0, 3.8], 1) = [2.5, 3.8]
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. * @throws IndexOutOfBoundsException * if the index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 2.1 */ public static float[] remove(final float[] array,final int index){ return (float[]) remove((Object) array, index); } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from * their indices). * *

* This method returns a new array with the same elements of the input * array except the element on the specified position. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.remove([1], 0)         = []
     * ArrayUtils.remove([2, 6], 0)      = [6]
     * ArrayUtils.remove([2, 6], 1)      = [2]
     * ArrayUtils.remove([2, 6, 3], 1)   = [2, 3]
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. * @throws IndexOutOfBoundsException * if the index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 2.1 */ public static int[] remove(final int[] array,final int index){ return (int[]) remove((Object) array, index); } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from * their indices). * *

* This method returns a new array with the same elements of the input * array except the element on the specified position. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.remove([1], 0)         = []
     * ArrayUtils.remove([2, 6], 0)      = [6]
     * ArrayUtils.remove([2, 6], 1)      = [2]
     * ArrayUtils.remove([2, 6, 3], 1)   = [2, 3]
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. * @throws IndexOutOfBoundsException * if the index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 2.1 */ public static long[] remove(final long[] array,final int index){ return (long[]) remove((Object) array, index); } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from * their indices). * *

* This method returns a new array with the same elements of the input * array except the element on the specified position. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * * @param array * the array to remove the element from, may not be {@code null} * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. * @throws IndexOutOfBoundsException * if the index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 2.1 */ private static Object remove(final Object array,final int index){ final int length = getLength(array); if (index < 0 || index >= length){ throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + length); } final Object result = Array.newInstance(array.getClass().getComponentType(), length - 1); System.arraycopy(array, 0, result, 0, index); if (index < length - 1){ System.arraycopy(array, index + 1, result, index, length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from * their indices). * *

* This method returns a new array with the same elements of the input * array except the element on the specified position. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.remove([1], 0)         = []
     * ArrayUtils.remove([2, 6], 0)      = [6]
     * ArrayUtils.remove([2, 6], 1)      = [2]
     * ArrayUtils.remove([2, 6, 3], 1)   = [2, 3]
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. * @throws IndexOutOfBoundsException * if the index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 2.1 */ public static short[] remove(final short[] array,final int index){ return (short[]) remove((Object) array, index); } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from * their indices). * *

* This method returns a new array with the same elements of the input * array except the element on the specified position. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.remove(["a"], 0)           = []
     * ArrayUtils.remove(["a", "b"], 0)      = ["b"]
     * ArrayUtils.remove(["a", "b"], 1)      = ["a"]
     * ArrayUtils.remove(["a", "b", "c"], 1) = ["a", "c"]
     * 
* * @param * the component type of the array * @param array * the array to remove the element from, may not be {@code null} * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. * @throws IndexOutOfBoundsException * if the index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 2.1 */ // remove() always creates an array of the same type as its input public static T[] remove(final T[] array,final int index){ return remove(array, index); } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. * *

* This method returns a new array with the same elements of the input * array except those at the specified positions. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.removeAll([true, false, true], 0, 2) = [false]
     * ArrayUtils.removeAll([true, false, true], 1, 2) = [true]
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those * at the specified positions. * @throws IndexOutOfBoundsException * if any index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 3.0.1 */ public static boolean[] removeAll(final boolean[] array,final int...indices){ return (boolean[]) removeAll((Object) array, indices); } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. * *

* This method returns a new array with the same elements of the input * array except those at the specified positions. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.removeAll([1], 0)             = []
     * ArrayUtils.removeAll([2, 6], 0)          = [6]
     * ArrayUtils.removeAll([2, 6], 0, 1)       = []
     * ArrayUtils.removeAll([2, 6, 3], 1, 2)    = [2]
     * ArrayUtils.removeAll([2, 6, 3], 0, 2)    = [6]
     * ArrayUtils.removeAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those * at the specified positions. * @throws IndexOutOfBoundsException * if any index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 3.0.1 */ public static byte[] removeAll(final byte[] array,final int...indices){ return (byte[]) removeAll((Object) array, indices); } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. * *

* This method returns a new array with the same elements of the input * array except those at the specified positions. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.removeAll([1], 0)             = []
     * ArrayUtils.removeAll([2, 6], 0)          = [6]
     * ArrayUtils.removeAll([2, 6], 0, 1)       = []
     * ArrayUtils.removeAll([2, 6, 3], 1, 2)    = [2]
     * ArrayUtils.removeAll([2, 6, 3], 0, 2)    = [6]
     * ArrayUtils.removeAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those * at the specified positions. * @throws IndexOutOfBoundsException * if any index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 3.0.1 */ public static char[] removeAll(final char[] array,final int...indices){ return (char[]) removeAll((Object) array, indices); } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. * *

* This method returns a new array with the same elements of the input * array except those at the specified positions. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.removeAll([1], 0)             = []
     * ArrayUtils.removeAll([2, 6], 0)          = [6]
     * ArrayUtils.removeAll([2, 6], 0, 1)       = []
     * ArrayUtils.removeAll([2, 6, 3], 1, 2)    = [2]
     * ArrayUtils.removeAll([2, 6, 3], 0, 2)    = [6]
     * ArrayUtils.removeAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those * at the specified positions. * @throws IndexOutOfBoundsException * if any index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 3.0.1 */ public static double[] removeAll(final double[] array,final int...indices){ return (double[]) removeAll((Object) array, indices); } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. * *

* This method returns a new array with the same elements of the input * array except those at the specified positions. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.removeAll([1], 0)             = []
     * ArrayUtils.removeAll([2, 6], 0)          = [6]
     * ArrayUtils.removeAll([2, 6], 0, 1)       = []
     * ArrayUtils.removeAll([2, 6, 3], 1, 2)    = [2]
     * ArrayUtils.removeAll([2, 6, 3], 0, 2)    = [6]
     * ArrayUtils.removeAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those * at the specified positions. * @throws IndexOutOfBoundsException * if any index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 3.0.1 */ public static float[] removeAll(final float[] array,final int...indices){ return (float[]) removeAll((Object) array, indices); } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. * *

* This method returns a new array with the same elements of the input * array except those at the specified positions. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.removeAll([1], 0)             = []
     * ArrayUtils.removeAll([2, 6], 0)          = [6]
     * ArrayUtils.removeAll([2, 6], 0, 1)       = []
     * ArrayUtils.removeAll([2, 6, 3], 1, 2)    = [2]
     * ArrayUtils.removeAll([2, 6, 3], 0, 2)    = [6]
     * ArrayUtils.removeAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those * at the specified positions. * @throws IndexOutOfBoundsException * if any index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 3.0.1 */ public static int[] removeAll(final int[] array,final int...indices){ return (int[]) removeAll((Object) array, indices); } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. * *

* This method returns a new array with the same elements of the input * array except those at the specified positions. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.removeAll([1], 0)             = []
     * ArrayUtils.removeAll([2, 6], 0)          = [6]
     * ArrayUtils.removeAll([2, 6], 0, 1)       = []
     * ArrayUtils.removeAll([2, 6, 3], 1, 2)    = [2]
     * ArrayUtils.removeAll([2, 6, 3], 0, 2)    = [6]
     * ArrayUtils.removeAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those * at the specified positions. * @throws IndexOutOfBoundsException * if any index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 3.0.1 */ public static long[] removeAll(final long[] array,final int...indices){ return (long[]) removeAll((Object) array, indices); } /** * Removes multiple array elements specified by indices. * * @param array * source * @param indices * to remove * @return new array of same type minus elements specified by the set bits in {@code indices} * @since 3.2 */ // package protected for access by unit tests static Object removeAll(final Object array,final BitSet indices){ if (array == null){ return null; } final int srcLength = getLength(array); // No need to check maxIndex here, because method only currently called from removeElements() // which guarantee to generate on;y valid bit entries. // final int maxIndex = indices.length(); // if (maxIndex > srcLength) { // throw new IndexOutOfBoundsException("Index: " + (maxIndex-1) + ", Length: " + srcLength); // } final int removals = indices.cardinality(); // true bits are items to remove final Object result = Array.newInstance(array.getClass().getComponentType(), srcLength - removals); int srcIndex = 0; int destIndex = 0; int count; int set; while ((set = indices.nextSetBit(srcIndex)) != -1){ count = set - srcIndex; if (count > 0){ System.arraycopy(array, srcIndex, result, destIndex, count); destIndex += count; } srcIndex = indices.nextClearBit(set); } count = srcLength - srcIndex; if (count > 0){ System.arraycopy(array, srcIndex, result, destIndex, count); } return result; } /** * Removes multiple array elements specified by index. * * @param array * source * @param indices * to remove * @return new array of same type minus elements specified by unique values of {@code indices} * @since 3.0.1 */ // package protected for access by unit tests static Object removeAll(final Object array,final int...indices){ final int length = getLength(array); int diff = 0; // number of distinct indexes, i.e. number of entries that will be removed final int[] clonedIndices = clone(indices); Arrays.sort(clonedIndices); // identify length of result array if (isNotEmpty(clonedIndices)){ int i = clonedIndices.length; int prevIndex = length; while (--i >= 0){ final int index = clonedIndices[i]; if (index < 0 || index >= length){ throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + length); } if (index >= prevIndex){ continue; } diff++; prevIndex = index; } } // create result array final Object result = Array.newInstance(array.getClass().getComponentType(), length - diff); if (diff < length){ int end = length; // index just after last copy int dest = length - diff; // number of entries so far not copied for (int i = clonedIndices.length - 1; i >= 0; i--){ final int index = clonedIndices[i]; if (end - index > 1){ // same as (cp > 0) final int cp = end - index - 1; dest -= cp; System.arraycopy(array, index + 1, result, dest, cp); // Afer this copy, we still have room for dest items. } end = index; } if (end > 0){ System.arraycopy(array, 0, result, 0, end); } } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. * *

* This method returns a new array with the same elements of the input * array except those at the specified positions. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.removeAll([1], 0)             = []
     * ArrayUtils.removeAll([2, 6], 0)          = [6]
     * ArrayUtils.removeAll([2, 6], 0, 1)       = []
     * ArrayUtils.removeAll([2, 6, 3], 1, 2)    = [2]
     * ArrayUtils.removeAll([2, 6, 3], 0, 2)    = [6]
     * ArrayUtils.removeAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param array * the array to remove the element from, may not be {@code null} * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those * at the specified positions. * @throws IndexOutOfBoundsException * if any index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 3.0.1 */ public static short[] removeAll(final short[] array,final int...indices){ return (short[]) removeAll((Object) array, indices); } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. * *

* This method returns a new array with the same elements of the input * array except those at the specified positions. The component * type of the returned array is always the same as that of the input * array. * *

* If the input array is {@code null}, an IndexOutOfBoundsException * will be thrown, because in that case no valid index can be specified. * *

     * ArrayUtils.removeAll(["a", "b", "c"], 0, 2) = ["b"]
     * ArrayUtils.removeAll(["a", "b", "c"], 1, 2) = ["a"]
     * 
* * @param * the component type of the array * @param array * the array to remove the element from, may not be {@code null} * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those * at the specified positions. * @throws IndexOutOfBoundsException * if any index is out of range * (index < 0 || index >= array.length), or if the array is {@code null}. * @since 3.0.1 */ // removeAll() always creates an array of the same type as its input public static T[] removeAll(final T[] array,final int...indices){ return removeAll(array, indices); } /** *

* Removes the first occurrence of the specified element from the * specified array. All subsequent elements are shifted to the left * (subtracts one from their indices). If the array doesn't contains * such an element, no elements are removed from the array. * *

* This method returns a new array with the same elements of the input * array except the first occurrence of the specified element. The component * type of the returned array is always the same as that of the input * array. * *

     * ArrayUtils.removeElement(null, true)                = null
     * ArrayUtils.removeElement([], true)                  = []
     * ArrayUtils.removeElement([true], false)             = [true]
     * ArrayUtils.removeElement([true, false], false)      = [true]
     * ArrayUtils.removeElement([true, false, true], true) = [false, true]
     * 
* * @param array * the array to remove the element from, may be {@code null} * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. * @since 2.1 */ public static boolean[] removeElement(final boolean[] array,final boolean element){ final int index = indexOf(array, element); if (index == INDEX_NOT_FOUND){ return clone(array); } return remove(array, index); } /** *

* Removes the first occurrence of the specified element from the * specified array. All subsequent elements are shifted to the left * (subtracts one from their indices). If the array doesn't contains * such an element, no elements are removed from the array. * *

* This method returns a new array with the same elements of the input * array except the first occurrence of the specified element. The component * type of the returned array is always the same as that of the input * array. * *

     * ArrayUtils.removeElement(null, 1)        = null
     * ArrayUtils.removeElement([], 1)          = []
     * ArrayUtils.removeElement([1], 0)         = [1]
     * ArrayUtils.removeElement([1, 0], 0)      = [1]
     * ArrayUtils.removeElement([1, 0, 1], 1)   = [0, 1]
     * 
* * @param array * the array to remove the element from, may be {@code null} * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. * @since 2.1 */ public static byte[] removeElement(final byte[] array,final byte element){ final int index = indexOf(array, element); if (index == INDEX_NOT_FOUND){ return clone(array); } return remove(array, index); } /** *

* Removes the first occurrence of the specified element from the * specified array. All subsequent elements are shifted to the left * (subtracts one from their indices). If the array doesn't contains * such an element, no elements are removed from the array. * *

* This method returns a new array with the same elements of the input * array except the first occurrence of the specified element. The component * type of the returned array is always the same as that of the input * array. * *

     * ArrayUtils.removeElement(null, 'a')            = null
     * ArrayUtils.removeElement([], 'a')              = []
     * ArrayUtils.removeElement(['a'], 'b')           = ['a']
     * ArrayUtils.removeElement(['a', 'b'], 'a')      = ['b']
     * ArrayUtils.removeElement(['a', 'b', 'a'], 'a') = ['b', 'a']
     * 
* * @param array * the array to remove the element from, may be {@code null} * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. * @since 2.1 */ public static char[] removeElement(final char[] array,final char element){ final int index = indexOf(array, element); if (index == INDEX_NOT_FOUND){ return clone(array); } return remove(array, index); } /** *

* Removes the first occurrence of the specified element from the * specified array. All subsequent elements are shifted to the left * (subtracts one from their indices). If the array doesn't contains * such an element, no elements are removed from the array. * *

* This method returns a new array with the same elements of the input * array except the first occurrence of the specified element. The component * type of the returned array is always the same as that of the input * array. * *

     * ArrayUtils.removeElement(null, 1.1)            = null
     * ArrayUtils.removeElement([], 1.1)              = []
     * ArrayUtils.removeElement([1.1], 1.2)           = [1.1]
     * ArrayUtils.removeElement([1.1, 2.3], 1.1)      = [2.3]
     * ArrayUtils.removeElement([1.1, 2.3, 1.1], 1.1) = [2.3, 1.1]
     * 
* * @param array * the array to remove the element from, may be {@code null} * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. * @since 2.1 */ public static double[] removeElement(final double[] array,final double element){ final int index = indexOf(array, element); if (index == INDEX_NOT_FOUND){ return clone(array); } return remove(array, index); } /** *

* Removes the first occurrence of the specified element from the * specified array. All subsequent elements are shifted to the left * (subtracts one from their indices). If the array doesn't contains * such an element, no elements are removed from the array. * *

* This method returns a new array with the same elements of the input * array except the first occurrence of the specified element. The component * type of the returned array is always the same as that of the input * array. * *

     * ArrayUtils.removeElement(null, 1.1)            = null
     * ArrayUtils.removeElement([], 1.1)              = []
     * ArrayUtils.removeElement([1.1], 1.2)           = [1.1]
     * ArrayUtils.removeElement([1.1, 2.3], 1.1)      = [2.3]
     * ArrayUtils.removeElement([1.1, 2.3, 1.1], 1.1) = [2.3, 1.1]
     * 
* * @param array * the array to remove the element from, may be {@code null} * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. * @since 2.1 */ public static float[] removeElement(final float[] array,final float element){ final int index = indexOf(array, element); if (index == INDEX_NOT_FOUND){ return clone(array); } return remove(array, index); } /** *

* Removes the first occurrence of the specified element from the * specified array. All subsequent elements are shifted to the left * (subtracts one from their indices). If the array doesn't contains * such an element, no elements are removed from the array. * *

* This method returns a new array with the same elements of the input * array except the first occurrence of the specified element. The component * type of the returned array is always the same as that of the input * array. * *

     * ArrayUtils.removeElement(null, 1)      = null
     * ArrayUtils.removeElement([], 1)        = []
     * ArrayUtils.removeElement([1], 2)       = [1]
     * ArrayUtils.removeElement([1, 3], 1)    = [3]
     * ArrayUtils.removeElement([1, 3, 1], 1) = [3, 1]
     * 
* * @param array * the array to remove the element from, may be {@code null} * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. * @since 2.1 */ public static int[] removeElement(final int[] array,final int element){ final int index = indexOf(array, element); if (index == INDEX_NOT_FOUND){ return clone(array); } return remove(array, index); } /** *

* Removes the first occurrence of the specified element from the * specified array. All subsequent elements are shifted to the left * (subtracts one from their indices). If the array doesn't contains * such an element, no elements are removed from the array. * *

* This method returns a new array with the same elements of the input * array except the first occurrence of the specified element. The component * type of the returned array is always the same as that of the input * array. * *

     * ArrayUtils.removeElement(null, 1)      = null
     * ArrayUtils.removeElement([], 1)        = []
     * ArrayUtils.removeElement([1], 2)       = [1]
     * ArrayUtils.removeElement([1, 3], 1)    = [3]
     * ArrayUtils.removeElement([1, 3, 1], 1) = [3, 1]
     * 
* * @param array * the array to remove the element from, may be {@code null} * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. * @since 2.1 */ public static long[] removeElement(final long[] array,final long element){ final int index = indexOf(array, element); if (index == INDEX_NOT_FOUND){ return clone(array); } return remove(array, index); } /** *

* Removes the first occurrence of the specified element from the * specified array. All subsequent elements are shifted to the left * (subtracts one from their indices). If the array doesn't contains * such an element, no elements are removed from the array. * *

* This method returns a new array with the same elements of the input * array except the first occurrence of the specified element. The component * type of the returned array is always the same as that of the input * array. * *

     * ArrayUtils.removeElement(null, 1)      = null
     * ArrayUtils.removeElement([], 1)        = []
     * ArrayUtils.removeElement([1], 2)       = [1]
     * ArrayUtils.removeElement([1, 3], 1)    = [3]
     * ArrayUtils.removeElement([1, 3, 1], 1) = [3, 1]
     * 
* * @param array * the array to remove the element from, may be {@code null} * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. * @since 2.1 */ public static short[] removeElement(final short[] array,final short element){ final int index = indexOf(array, element); if (index == INDEX_NOT_FOUND){ return clone(array); } return remove(array, index); } /** *

* Removes the first occurrence of the specified element from the * specified array. All subsequent elements are shifted to the left * (subtracts one from their indices). If the array doesn't contains * such an element, no elements are removed from the array. * *

* This method returns a new array with the same elements of the input * array except the first occurrence of the specified element. The component * type of the returned array is always the same as that of the input * array. * *

     * ArrayUtils.removeElement(null, "a")            = null
     * ArrayUtils.removeElement([], "a")              = []
     * ArrayUtils.removeElement(["a"], "b")           = ["a"]
     * ArrayUtils.removeElement(["a", "b"], "a")      = ["b"]
     * ArrayUtils.removeElement(["a", "b", "a"], "a") = ["b", "a"]
     * 
* * @param * the component type of the array * @param array * the array to remove the element from, may be {@code null} * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. * @since 2.1 */ public static T[] removeElement(final T[] array,final Object element){ final int index = indexOf(array, element); if (index == INDEX_NOT_FOUND){ return clone(array); } return remove(array, index); } /** *

* Reverses the order of the given array. * *

* This method does nothing for a {@code null} input array. * * @param array * the array to reverse, may be {@code null} */ public static void reverse(final boolean[] array){ if (array == null){ return; } reverse(array, 0, array.length); } /** *

* Reverses the order of the given array in the given range. * *

* This method does nothing for a {@code null} input array. * * @param array * the array to reverse, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are reversed in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @since 3.2 */ public static void reverse(final boolean[] array,final int startIndexInclusive,final int endIndexExclusive){ if (array == null){ return; } int i = startIndexInclusive < 0 ? 0 : startIndexInclusive; int j = Math.min(array.length, endIndexExclusive) - 1; boolean tmp; while (j > i){ tmp = array[j]; array[j] = array[i]; array[i] = tmp; j--; i++; } } /** *

* Reverses the order of the given array. * *

* This method does nothing for a {@code null} input array. * * @param array * the array to reverse, may be {@code null} */ public static void reverse(final byte[] array){ if (array == null){ return; } reverse(array, 0, array.length); } /** *

* Reverses the order of the given array in the given range. * *

* This method does nothing for a {@code null} input array. * * @param array * the array to reverse, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are reversed in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @since 3.2 */ public static void reverse(final byte[] array,final int startIndexInclusive,final int endIndexExclusive){ if (array == null){ return; } int i = startIndexInclusive < 0 ? 0 : startIndexInclusive; int j = Math.min(array.length, endIndexExclusive) - 1; byte tmp; while (j > i){ tmp = array[j]; array[j] = array[i]; array[i] = tmp; j--; i++; } } /** *

* Reverses the order of the given array. * *

* This method does nothing for a {@code null} input array. * * @param array * the array to reverse, may be {@code null} */ public static void reverse(final char[] array){ if (array == null){ return; } reverse(array, 0, array.length); } /** *

* Reverses the order of the given array in the given range. * *

* This method does nothing for a {@code null} input array. * * @param array * the array to reverse, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are reversed in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @since 3.2 */ public static void reverse(final char[] array,final int startIndexInclusive,final int endIndexExclusive){ if (array == null){ return; } int i = startIndexInclusive < 0 ? 0 : startIndexInclusive; int j = Math.min(array.length, endIndexExclusive) - 1; char tmp; while (j > i){ tmp = array[j]; array[j] = array[i]; array[i] = tmp; j--; i++; } } /** *

* Reverses the order of the given array. * *

* This method does nothing for a {@code null} input array. * * @param array * the array to reverse, may be {@code null} */ public static void reverse(final double[] array){ if (array == null){ return; } reverse(array, 0, array.length); } /** *

* Reverses the order of the given array in the given range. * *

* This method does nothing for a {@code null} input array. * * @param array * the array to reverse, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are reversed in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @since 3.2 */ public static void reverse(final double[] array,final int startIndexInclusive,final int endIndexExclusive){ if (array == null){ return; } int i = startIndexInclusive < 0 ? 0 : startIndexInclusive; int j = Math.min(array.length, endIndexExclusive) - 1; double tmp; while (j > i){ tmp = array[j]; array[j] = array[i]; array[i] = tmp; j--; i++; } } /** *

* Reverses the order of the given array. * *

* This method does nothing for a {@code null} input array. * * @param array * the array to reverse, may be {@code null} */ public static void reverse(final float[] array){ if (array == null){ return; } reverse(array, 0, array.length); } /** *

* Reverses the order of the given array in the given range. * *

* This method does nothing for a {@code null} input array. * * @param array * the array to reverse, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are reversed in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @since 3.2 */ public static void reverse(final float[] array,final int startIndexInclusive,final int endIndexExclusive){ if (array == null){ return; } int i = startIndexInclusive < 0 ? 0 : startIndexInclusive; int j = Math.min(array.length, endIndexExclusive) - 1; float tmp; while (j > i){ tmp = array[j]; array[j] = array[i]; array[i] = tmp; j--; i++; } } /** *

* Reverses the order of the given array. * *

* This method does nothing for a {@code null} input array. * * @param array * the array to reverse, may be {@code null} */ public static void reverse(final int[] array){ if (array == null){ return; } reverse(array, 0, array.length); } /** *

* Reverses the order of the given array in the given range. * *

* This method does nothing for a {@code null} input array. * * @param array * the array to reverse, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are reversed in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @since 3.2 */ public static void reverse(final int[] array,final int startIndexInclusive,final int endIndexExclusive){ if (array == null){ return; } int i = startIndexInclusive < 0 ? 0 : startIndexInclusive; int j = Math.min(array.length, endIndexExclusive) - 1; int tmp; while (j > i){ tmp = array[j]; array[j] = array[i]; array[i] = tmp; j--; i++; } } /** *

* Reverses the order of the given array. * *

* This method does nothing for a {@code null} input array. * * @param array * the array to reverse, may be {@code null} */ public static void reverse(final long[] array){ if (array == null){ return; } reverse(array, 0, array.length); } /** *

* Reverses the order of the given array in the given range. * *

* This method does nothing for a {@code null} input array. * * @param array * the array to reverse, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are reversed in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @since 3.2 */ public static void reverse(final long[] array,final int startIndexInclusive,final int endIndexExclusive){ if (array == null){ return; } int i = startIndexInclusive < 0 ? 0 : startIndexInclusive; int j = Math.min(array.length, endIndexExclusive) - 1; long tmp; while (j > i){ tmp = array[j]; array[j] = array[i]; array[i] = tmp; j--; i++; } } /** * Shifts the order of the given boolean array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final boolean[] array,final int offset){ if (array == null){ return; } shift(array, 0, array.length, offset); } /** * Shifts the order of a series of elements in the given boolean array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final boolean[] array,int startIndexInclusive,int endIndexExclusive,int offset){ if (array == null){ return; } if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0){ return; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive >= array.length){ endIndexExclusive = array.length; } int n = endIndexExclusive - startIndexInclusive; if (n <= 1){ return; } offset %= n; if (offset < 0){ offset += n; } // For algorithm explanations and proof of O(n) time complexity and O(1) space complexity // see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/ while (n > 1 && offset > 0){ final int n_offset = n - offset; if (offset > n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset); n = offset; offset -= n_offset; }else if (offset < n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); startIndexInclusive += offset; n = n_offset; }else{ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); break; } } } /** * Shifts the order of the given byte array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final byte[] array,final int offset){ if (array == null){ return; } shift(array, 0, array.length, offset); } /** * Shifts the order of a series of elements in the given byte array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final byte[] array,int startIndexInclusive,int endIndexExclusive,int offset){ if (array == null){ return; } if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0){ return; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive >= array.length){ endIndexExclusive = array.length; } int n = endIndexExclusive - startIndexInclusive; if (n <= 1){ return; } offset %= n; if (offset < 0){ offset += n; } // For algorithm explanations and proof of O(n) time complexity and O(1) space complexity // see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/ while (n > 1 && offset > 0){ final int n_offset = n - offset; if (offset > n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset); n = offset; offset -= n_offset; }else if (offset < n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); startIndexInclusive += offset; n = n_offset; }else{ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); break; } } } /** * Shifts the order of the given char array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final char[] array,final int offset){ if (array == null){ return; } shift(array, 0, array.length, offset); } /** * Shifts the order of a series of elements in the given char array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final char[] array,int startIndexInclusive,int endIndexExclusive,int offset){ if (array == null){ return; } if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0){ return; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive >= array.length){ endIndexExclusive = array.length; } int n = endIndexExclusive - startIndexInclusive; if (n <= 1){ return; } offset %= n; if (offset < 0){ offset += n; } // For algorithm explanations and proof of O(n) time complexity and O(1) space complexity // see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/ while (n > 1 && offset > 0){ final int n_offset = n - offset; if (offset > n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset); n = offset; offset -= n_offset; }else if (offset < n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); startIndexInclusive += offset; n = n_offset; }else{ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); break; } } } /** * Shifts the order of the given double array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final double[] array,final int offset){ if (array == null){ return; } shift(array, 0, array.length, offset); } /** * Shifts the order of a series of elements in the given double array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final double[] array,int startIndexInclusive,int endIndexExclusive,int offset){ if (array == null){ return; } if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0){ return; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive >= array.length){ endIndexExclusive = array.length; } int n = endIndexExclusive - startIndexInclusive; if (n <= 1){ return; } offset %= n; if (offset < 0){ offset += n; } // For algorithm explanations and proof of O(n) time complexity and O(1) space complexity // see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/ while (n > 1 && offset > 0){ final int n_offset = n - offset; if (offset > n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset); n = offset; offset -= n_offset; }else if (offset < n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); startIndexInclusive += offset; n = n_offset; }else{ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); break; } } } /** * Shifts the order of the given float array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final float[] array,final int offset){ if (array == null){ return; } shift(array, 0, array.length, offset); } /** * Shifts the order of a series of elements in the given float array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final float[] array,int startIndexInclusive,int endIndexExclusive,int offset){ if (array == null){ return; } if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0){ return; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive >= array.length){ endIndexExclusive = array.length; } int n = endIndexExclusive - startIndexInclusive; if (n <= 1){ return; } offset %= n; if (offset < 0){ offset += n; } // For algorithm explanations and proof of O(n) time complexity and O(1) space complexity // see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/ while (n > 1 && offset > 0){ final int n_offset = n - offset; if (offset > n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset); n = offset; offset -= n_offset; }else if (offset < n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); startIndexInclusive += offset; n = n_offset; }else{ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); break; } } } /** * Shifts the order of the given int array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final int[] array,final int offset){ if (array == null){ return; } shift(array, 0, array.length, offset); } /** * Shifts the order of a series of elements in the given int array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final int[] array,int startIndexInclusive,int endIndexExclusive,int offset){ if (array == null){ return; } if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0){ return; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive >= array.length){ endIndexExclusive = array.length; } int n = endIndexExclusive - startIndexInclusive; if (n <= 1){ return; } offset %= n; if (offset < 0){ offset += n; } // For algorithm explanations and proof of O(n) time complexity and O(1) space complexity // see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/ while (n > 1 && offset > 0){ final int n_offset = n - offset; if (offset > n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset); n = offset; offset -= n_offset; }else if (offset < n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); startIndexInclusive += offset; n = n_offset; }else{ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); break; } } } /** * Shifts the order of the given long array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final long[] array,final int offset){ if (array == null){ return; } shift(array, 0, array.length, offset); } /** * Shifts the order of a series of elements in the given long array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final long[] array,int startIndexInclusive,int endIndexExclusive,int offset){ if (array == null){ return; } if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0){ return; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive >= array.length){ endIndexExclusive = array.length; } int n = endIndexExclusive - startIndexInclusive; if (n <= 1){ return; } offset %= n; if (offset < 0){ offset += n; } // For algorithm explanations and proof of O(n) time complexity and O(1) space complexity // see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/ while (n > 1 && offset > 0){ final int n_offset = n - offset; if (offset > n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset); n = offset; offset -= n_offset; }else if (offset < n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); startIndexInclusive += offset; n = n_offset; }else{ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); break; } } } // Shift //----------------------------------------------------------------------- /** * Shifts the order of the given array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final Object[] array,final int offset){ if (array == null){ return; } shift(array, 0, array.length, offset); } /** * Shifts the order of a series of elements in the given array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final Object[] array,int startIndexInclusive,int endIndexExclusive,int offset){ if (array == null){ return; } if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0){ return; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive >= array.length){ endIndexExclusive = array.length; } int n = endIndexExclusive - startIndexInclusive; if (n <= 1){ return; } offset %= n; if (offset < 0){ offset += n; } // For algorithm explanations and proof of O(n) time complexity and O(1) space complexity // see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/ while (n > 1 && offset > 0){ final int n_offset = n - offset; if (offset > n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset); n = offset; offset -= n_offset; }else if (offset < n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); startIndexInclusive += offset; n = n_offset; }else{ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); break; } } } /** * Shifts the order of the given short array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final short[] array,final int offset){ if (array == null){ return; } shift(array, 0, array.length, offset); } /** * Shifts the order of a series of elements in the given short array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for {@code null} or empty input arrays. *

* * @param array * the array to shift, may be {@code null} * @param startIndexInclusive * the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no * change. * @param endIndexExclusive * elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no * change. Overvalue (>array.length) is demoted to array length. * @param offset * The number of positions to rotate the elements. If the offset is larger than the number of elements to * rotate, than the effective offset is modulo the number of elements to rotate. * @since 3.5 */ public static void shift(final short[] array,int startIndexInclusive,int endIndexExclusive,int offset){ if (array == null){ return; } if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0){ return; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive >= array.length){ endIndexExclusive = array.length; } int n = endIndexExclusive - startIndexInclusive; if (n <= 1){ return; } offset %= n; if (offset < 0){ offset += n; } // For algorithm explanations and proof of O(n) time complexity and O(1) space complexity // see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/ while (n > 1 && offset > 0){ final int n_offset = n - offset; if (offset > n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset); n = offset; offset -= n_offset; }else if (offset < n_offset){ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); startIndexInclusive += offset; n = n_offset; }else{ swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset); break; } } } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final boolean[] array){ shuffle(array, new Random()); } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @param random * the source of randomness used to permute the elements * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final boolean[] array,final Random random){ for (int i = array.length; i > 1; i--){ swap(array, i - 1, random.nextInt(i), 1); } } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final byte[] array){ shuffle(array, new Random()); } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @param random * the source of randomness used to permute the elements * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final byte[] array,final Random random){ for (int i = array.length; i > 1; i--){ swap(array, i - 1, random.nextInt(i), 1); } } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final char[] array){ shuffle(array, new Random()); } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @param random * the source of randomness used to permute the elements * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final char[] array,final Random random){ for (int i = array.length; i > 1; i--){ swap(array, i - 1, random.nextInt(i), 1); } } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final double[] array){ shuffle(array, new Random()); } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @param random * the source of randomness used to permute the elements * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final double[] array,final Random random){ for (int i = array.length; i > 1; i--){ swap(array, i - 1, random.nextInt(i), 1); } } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final float[] array){ shuffle(array, new Random()); } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @param random * the source of randomness used to permute the elements * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final float[] array,final Random random){ for (int i = array.length; i > 1; i--){ swap(array, i - 1, random.nextInt(i), 1); } } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final int[] array){ shuffle(array, new Random()); } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @param random * the source of randomness used to permute the elements * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final int[] array,final Random random){ for (int i = array.length; i > 1; i--){ swap(array, i - 1, random.nextInt(i), 1); } } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final long[] array){ shuffle(array, new Random()); } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @param random * the source of randomness used to permute the elements * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final long[] array,final Random random){ for (int i = array.length; i > 1; i--){ swap(array, i - 1, random.nextInt(i), 1); } } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final Object[] array){ shuffle(array, new Random()); } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @param random * the source of randomness used to permute the elements * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final Object[] array,final Random random){ for (int i = array.length; i > 1; i--){ swap(array, i - 1, random.nextInt(i), 1); } } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final short[] array){ shuffle(array, new Random()); } /** * Randomly permutes the elements of the specified array using the Fisher-Yates algorithm. * * @param array * the array to shuffle * @param random * the source of randomness used to permute the elements * @see Fisher-Yates shuffle algorithm * @since 3.6 */ public static void shuffle(final short[] array,final Random random){ for (int i = array.length; i > 1; i--){ swap(array, i - 1, random.nextInt(i), 1); } } /** *

* Produces a new {@code boolean} array containing the elements * between the start and end indices. * *

* The start index is inclusive, the end index exclusive. * Null array input produces null output. * * @param array * the array * @param startIndexInclusive * the starting index. Undervalue (<0) * is promoted to 0, overvalue (>array.length) results * in an empty array. * @param endIndexExclusive * elements up to endIndex-1 are present in the * returned subarray. Undervalue (< startIndex) produces * empty array, overvalue (>array.length) is demoted to * array length. * @return a new array containing the elements between * the start and end indices. * @since 2.1 * @see Arrays#copyOfRange(boolean[], int, int) */ public static boolean[] subarray(final boolean[] array,int startIndexInclusive,int endIndexExclusive){ if (array == null){ return null; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive > array.length){ endIndexExclusive = array.length; } final int newSize = endIndexExclusive - startIndexInclusive; if (newSize <= 0){ return EMPTY_BOOLEAN_ARRAY; } final boolean[] subarray = new boolean[newSize]; System.arraycopy(array, startIndexInclusive, subarray, 0, newSize); return subarray; } /** *

* Produces a new {@code byte} array containing the elements * between the start and end indices. * *

* The start index is inclusive, the end index exclusive. * Null array input produces null output. * * @param array * the array * @param startIndexInclusive * the starting index. Undervalue (<0) * is promoted to 0, overvalue (>array.length) results * in an empty array. * @param endIndexExclusive * elements up to endIndex-1 are present in the * returned subarray. Undervalue (< startIndex) produces * empty array, overvalue (>array.length) is demoted to * array length. * @return a new array containing the elements between * the start and end indices. * @since 2.1 * @see Arrays#copyOfRange(byte[], int, int) */ public static byte[] subarray(final byte[] array,int startIndexInclusive,int endIndexExclusive){ if (array == null){ return null; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive > array.length){ endIndexExclusive = array.length; } final int newSize = endIndexExclusive - startIndexInclusive; if (newSize <= 0){ return EMPTY_BYTE_ARRAY; } final byte[] subarray = new byte[newSize]; System.arraycopy(array, startIndexInclusive, subarray, 0, newSize); return subarray; } /** *

* Produces a new {@code char} array containing the elements * between the start and end indices. * *

* The start index is inclusive, the end index exclusive. * Null array input produces null output. * * @param array * the array * @param startIndexInclusive * the starting index. Undervalue (<0) * is promoted to 0, overvalue (>array.length) results * in an empty array. * @param endIndexExclusive * elements up to endIndex-1 are present in the * returned subarray. Undervalue (< startIndex) produces * empty array, overvalue (>array.length) is demoted to * array length. * @return a new array containing the elements between * the start and end indices. * @since 2.1 * @see Arrays#copyOfRange(char[], int, int) */ public static char[] subarray(final char[] array,int startIndexInclusive,int endIndexExclusive){ if (array == null){ return null; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive > array.length){ endIndexExclusive = array.length; } final int newSize = endIndexExclusive - startIndexInclusive; if (newSize <= 0){ return EMPTY_CHAR_ARRAY; } final char[] subarray = new char[newSize]; System.arraycopy(array, startIndexInclusive, subarray, 0, newSize); return subarray; } /** *

* Produces a new {@code double} array containing the elements * between the start and end indices. * *

* The start index is inclusive, the end index exclusive. * Null array input produces null output. * * @param array * the array * @param startIndexInclusive * the starting index. Undervalue (<0) * is promoted to 0, overvalue (>array.length) results * in an empty array. * @param endIndexExclusive * elements up to endIndex-1 are present in the * returned subarray. Undervalue (< startIndex) produces * empty array, overvalue (>array.length) is demoted to * array length. * @return a new array containing the elements between * the start and end indices. * @since 2.1 * @see Arrays#copyOfRange(double[], int, int) */ public static double[] subarray(final double[] array,int startIndexInclusive,int endIndexExclusive){ if (array == null){ return null; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive > array.length){ endIndexExclusive = array.length; } final int newSize = endIndexExclusive - startIndexInclusive; if (newSize <= 0){ return EMPTY_DOUBLE_ARRAY; } final double[] subarray = new double[newSize]; System.arraycopy(array, startIndexInclusive, subarray, 0, newSize); return subarray; } /** *

* Produces a new {@code float} array containing the elements * between the start and end indices. * *

* The start index is inclusive, the end index exclusive. * Null array input produces null output. * * @param array * the array * @param startIndexInclusive * the starting index. Undervalue (<0) * is promoted to 0, overvalue (>array.length) results * in an empty array. * @param endIndexExclusive * elements up to endIndex-1 are present in the * returned subarray. Undervalue (< startIndex) produces * empty array, overvalue (>array.length) is demoted to * array length. * @return a new array containing the elements between * the start and end indices. * @since 2.1 * @see Arrays#copyOfRange(float[], int, int) */ public static float[] subarray(final float[] array,int startIndexInclusive,int endIndexExclusive){ if (array == null){ return null; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive > array.length){ endIndexExclusive = array.length; } final int newSize = endIndexExclusive - startIndexInclusive; if (newSize <= 0){ return EMPTY_FLOAT_ARRAY; } final float[] subarray = new float[newSize]; System.arraycopy(array, startIndexInclusive, subarray, 0, newSize); return subarray; } /** *

* Produces a new {@code int} array containing the elements * between the start and end indices. * *

* The start index is inclusive, the end index exclusive. * Null array input produces null output. * * @param array * the array * @param startIndexInclusive * the starting index. Undervalue (<0) * is promoted to 0, overvalue (>array.length) results * in an empty array. * @param endIndexExclusive * elements up to endIndex-1 are present in the * returned subarray. Undervalue (< startIndex) produces * empty array, overvalue (>array.length) is demoted to * array length. * @return a new array containing the elements between * the start and end indices. * @since 2.1 * @see Arrays#copyOfRange(int[], int, int) */ public static int[] subarray(final int[] array,int startIndexInclusive,int endIndexExclusive){ if (array == null){ return null; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive > array.length){ endIndexExclusive = array.length; } final int newSize = endIndexExclusive - startIndexInclusive; if (newSize <= 0){ return EMPTY_INT_ARRAY; } final int[] subarray = new int[newSize]; System.arraycopy(array, startIndexInclusive, subarray, 0, newSize); return subarray; } /** *

* Produces a new {@code long} array containing the elements * between the start and end indices. * *

* The start index is inclusive, the end index exclusive. * Null array input produces null output. * * @param array * the array * @param startIndexInclusive * the starting index. Undervalue (<0) * is promoted to 0, overvalue (>array.length) results * in an empty array. * @param endIndexExclusive * elements up to endIndex-1 are present in the * returned subarray. Undervalue (< startIndex) produces * empty array, overvalue (>array.length) is demoted to * array length. * @return a new array containing the elements between * the start and end indices. * @since 2.1 * @see Arrays#copyOfRange(long[], int, int) */ public static long[] subarray(final long[] array,int startIndexInclusive,int endIndexExclusive){ if (array == null){ return null; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive > array.length){ endIndexExclusive = array.length; } final int newSize = endIndexExclusive - startIndexInclusive; if (newSize <= 0){ return EMPTY_LONG_ARRAY; } final long[] subarray = new long[newSize]; System.arraycopy(array, startIndexInclusive, subarray, 0, newSize); return subarray; } /** *

* Produces a new {@code short} array containing the elements * between the start and end indices. * *

* The start index is inclusive, the end index exclusive. * Null array input produces null output. * * @param array * the array * @param startIndexInclusive * the starting index. Undervalue (<0) * is promoted to 0, overvalue (>array.length) results * in an empty array. * @param endIndexExclusive * elements up to endIndex-1 are present in the * returned subarray. Undervalue (< startIndex) produces * empty array, overvalue (>array.length) is demoted to * array length. * @return a new array containing the elements between * the start and end indices. * @since 2.1 * @see Arrays#copyOfRange(short[], int, int) */ public static short[] subarray(final short[] array,int startIndexInclusive,int endIndexExclusive){ if (array == null){ return null; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive > array.length){ endIndexExclusive = array.length; } final int newSize = endIndexExclusive - startIndexInclusive; if (newSize <= 0){ return EMPTY_SHORT_ARRAY; } final short[] subarray = new short[newSize]; System.arraycopy(array, startIndexInclusive, subarray, 0, newSize); return subarray; } // Subarrays //----------------------------------------------------------------------- /** *

* Produces a new array containing the elements between * the start and end indices. * *

* The start index is inclusive, the end index exclusive. * Null array input produces null output. * *

* The component type of the subarray is always the same as * that of the input array. Thus, if the input is an array of type * {@code Date}, the following usage is envisaged: * *

     * 
     * Date[] someDates = (Date[]) ArrayUtils.subarray(allDates, 2, 5);
     * 
* * @param * the component type of the array * @param array * the array * @param startIndexInclusive * the starting index. Undervalue (<0) * is promoted to 0, overvalue (>array.length) results * in an empty array. * @param endIndexExclusive * elements up to endIndex-1 are present in the * returned subarray. Undervalue (< startIndex) produces * empty array, overvalue (>array.length) is demoted to * array length. * @return a new array containing the elements between * the start and end indices. * @since 2.1 * @see Arrays#copyOfRange(Object[], int, int) */ public static T[] subarray(final T[] array,int startIndexInclusive,int endIndexExclusive){ if (array == null){ return null; } if (startIndexInclusive < 0){ startIndexInclusive = 0; } if (endIndexExclusive > array.length){ endIndexExclusive = array.length; } final int newSize = endIndexExclusive - startIndexInclusive; final Class type = array.getClass().getComponentType(); if (newSize <= 0){ @SuppressWarnings("unchecked") // OK, because array is of type T final T[] emptyArray = (T[]) Array.newInstance(type, 0); return emptyArray; } @SuppressWarnings("unchecked") // OK, because array is of type T final T[] subarray = (T[]) Array.newInstance(type, newSize); System.arraycopy(array, startIndexInclusive, subarray, 0, newSize); return subarray; } /** * Swaps two elements in the given boolean array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for a {@code null} or empty input array or for overflow indices. * Negative indices are promoted to 0(zero). *

* * Examples: *
    *
  • ArrayUtils.swap([1, 2, 3], 0, 2) -> [3, 2, 1]
  • *
  • ArrayUtils.swap([1, 2, 3], 0, 0) -> [1, 2, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], 1, 0) -> [2, 1, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], 0, 5) -> [1, 2, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], -1, 1) -> [2, 1, 3]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element to swap * @param offset2 * the index of the second element to swap * @since 3.5 */ public static void swap(final boolean[] array,final int offset1,final int offset2){ if (isEmpty(array)){ return; } swap(array, offset1, offset2, 1); } /** * Swaps a series of elements in the given boolean array. * *

* This method does nothing for a {@code null} or empty input array or * for overflow indices. Negative indices are promoted to 0(zero). If any * of the sub-arrays to swap falls outside of the given array, then the * swap is stopped at the end of the array and as many as possible elements * are swapped. *

* * Examples: *
    *
  • ArrayUtils.swap([true, false, true, false], 0, 2, 1) -> [true, false, true, false]
  • *
  • ArrayUtils.swap([true, false, true, false], 0, 0, 1) -> [true, false, true, false]
  • *
  • ArrayUtils.swap([true, false, true, false], 0, 2, 2) -> [true, false, true, false]
  • *
  • ArrayUtils.swap([true, false, true, false], -3, 2, 2) -> [true, false, true, false]
  • *
  • ArrayUtils.swap([true, false, true, false], 0, 3, 3) -> [false, false, true, true]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element in the series to swap * @param offset2 * the index of the second element in the series to swap * @param len * the number of elements to swap starting with the given indices * @since 3.5 */ public static void swap(final boolean[] array,int offset1,int offset2,int len){ if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length){ return; } if (offset1 < 0){ offset1 = 0; } if (offset2 < 0){ offset2 = 0; } len = Math.min(Math.min(len, array.length - offset1), array.length - offset2); for (int i = 0; i < len; i++, offset1++, offset2++){ final boolean aux = array[offset1]; array[offset1] = array[offset2]; array[offset2] = aux; } } /** * Swaps two elements in the given byte array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for a {@code null} or empty input array or for overflow indices. * Negative indices are promoted to 0(zero). *

* * Examples: *
    *
  • ArrayUtils.swap([1, 2, 3], 0, 2) -> [3, 2, 1]
  • *
  • ArrayUtils.swap([1, 2, 3], 0, 0) -> [1, 2, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], 1, 0) -> [2, 1, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], 0, 5) -> [1, 2, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], -1, 1) -> [2, 1, 3]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element to swap * @param offset2 * the index of the second element to swap * @since 3.5 */ public static void swap(final byte[] array,final int offset1,final int offset2){ if (isEmpty(array)){ return; } swap(array, offset1, offset2, 1); } /** * Swaps a series of elements in the given byte array. * *

* This method does nothing for a {@code null} or empty input array or * for overflow indices. Negative indices are promoted to 0(zero). If any * of the sub-arrays to swap falls outside of the given array, then the * swap is stopped at the end of the array and as many as possible elements * are swapped. *

* * Examples: *
    *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 2, 1) -> [3, 2, 1, 4]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 0, 1) -> [1, 2, 3, 4]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 2, 0, 2) -> [3, 4, 1, 2]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], -3, 2, 2) -> [3, 4, 1, 2]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 3, 3) -> [4, 2, 3, 1]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element in the series to swap * @param offset2 * the index of the second element in the series to swap * @param len * the number of elements to swap starting with the given indices * @since 3.5 */ public static void swap(final byte[] array,int offset1,int offset2,int len){ if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length){ return; } if (offset1 < 0){ offset1 = 0; } if (offset2 < 0){ offset2 = 0; } len = Math.min(Math.min(len, array.length - offset1), array.length - offset2); for (int i = 0; i < len; i++, offset1++, offset2++){ final byte aux = array[offset1]; array[offset1] = array[offset2]; array[offset2] = aux; } } /** * Swaps two elements in the given char array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for a {@code null} or empty input array or for overflow indices. * Negative indices are promoted to 0(zero). *

* * Examples: *
    *
  • ArrayUtils.swap([1, 2, 3], 0, 2) -> [3, 2, 1]
  • *
  • ArrayUtils.swap([1, 2, 3], 0, 0) -> [1, 2, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], 1, 0) -> [2, 1, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], 0, 5) -> [1, 2, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], -1, 1) -> [2, 1, 3]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element to swap * @param offset2 * the index of the second element to swap * @since 3.5 */ public static void swap(final char[] array,final int offset1,final int offset2){ if (isEmpty(array)){ return; } swap(array, offset1, offset2, 1); } /** * Swaps a series of elements in the given char array. * *

* This method does nothing for a {@code null} or empty input array or * for overflow indices. Negative indices are promoted to 0(zero). If any * of the sub-arrays to swap falls outside of the given array, then the * swap is stopped at the end of the array and as many as possible elements * are swapped. *

* * Examples: *
    *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 2, 1) -> [3, 2, 1, 4]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 0, 1) -> [1, 2, 3, 4]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 2, 0, 2) -> [3, 4, 1, 2]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], -3, 2, 2) -> [3, 4, 1, 2]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 3, 3) -> [4, 2, 3, 1]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element in the series to swap * @param offset2 * the index of the second element in the series to swap * @param len * the number of elements to swap starting with the given indices * @since 3.5 */ public static void swap(final char[] array,int offset1,int offset2,int len){ if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length){ return; } if (offset1 < 0){ offset1 = 0; } if (offset2 < 0){ offset2 = 0; } len = Math.min(Math.min(len, array.length - offset1), array.length - offset2); for (int i = 0; i < len; i++, offset1++, offset2++){ final char aux = array[offset1]; array[offset1] = array[offset2]; array[offset2] = aux; } } /** * Swaps two elements in the given double array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for a {@code null} or empty input array or for overflow indices. * Negative indices are promoted to 0(zero). *

* * Examples: *
    *
  • ArrayUtils.swap([1, 2, 3], 0, 2) -> [3, 2, 1]
  • *
  • ArrayUtils.swap([1, 2, 3], 0, 0) -> [1, 2, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], 1, 0) -> [2, 1, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], 0, 5) -> [1, 2, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], -1, 1) -> [2, 1, 3]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element to swap * @param offset2 * the index of the second element to swap * @since 3.5 */ public static void swap(final double[] array,final int offset1,final int offset2){ if (isEmpty(array)){ return; } swap(array, offset1, offset2, 1); } /** * Swaps a series of elements in the given double array. * *

* This method does nothing for a {@code null} or empty input array or * for overflow indices. Negative indices are promoted to 0(zero). If any * of the sub-arrays to swap falls outside of the given array, then the * swap is stopped at the end of the array and as many as possible elements * are swapped. *

* * Examples: *
    *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 2, 1) -> [3, 2, 1, 4]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 0, 1) -> [1, 2, 3, 4]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 2, 0, 2) -> [3, 4, 1, 2]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], -3, 2, 2) -> [3, 4, 1, 2]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 3, 3) -> [4, 2, 3, 1]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element in the series to swap * @param offset2 * the index of the second element in the series to swap * @param len * the number of elements to swap starting with the given indices * @since 3.5 */ public static void swap(final double[] array,int offset1,int offset2,int len){ if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length){ return; } if (offset1 < 0){ offset1 = 0; } if (offset2 < 0){ offset2 = 0; } len = Math.min(Math.min(len, array.length - offset1), array.length - offset2); for (int i = 0; i < len; i++, offset1++, offset2++){ final double aux = array[offset1]; array[offset1] = array[offset2]; array[offset2] = aux; } } /** * Swaps two elements in the given float array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for a {@code null} or empty input array or for overflow indices. * Negative indices are promoted to 0(zero). *

* * Examples: *
    *
  • ArrayUtils.swap([1, 2, 3], 0, 2) -> [3, 2, 1]
  • *
  • ArrayUtils.swap([1, 2, 3], 0, 0) -> [1, 2, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], 1, 0) -> [2, 1, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], 0, 5) -> [1, 2, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], -1, 1) -> [2, 1, 3]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element to swap * @param offset2 * the index of the second element to swap * @since 3.5 */ public static void swap(final float[] array,final int offset1,final int offset2){ if (isEmpty(array)){ return; } swap(array, offset1, offset2, 1); } /** * Swaps a series of elements in the given float array. * *

* This method does nothing for a {@code null} or empty input array or * for overflow indices. Negative indices are promoted to 0(zero). If any * of the sub-arrays to swap falls outside of the given array, then the * swap is stopped at the end of the array and as many as possible elements * are swapped. *

* * Examples: *
    *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 2, 1) -> [3, 2, 1, 4]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 0, 1) -> [1, 2, 3, 4]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 2, 0, 2) -> [3, 4, 1, 2]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], -3, 2, 2) -> [3, 4, 1, 2]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 3, 3) -> [4, 2, 3, 1]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element in the series to swap * @param offset2 * the index of the second element in the series to swap * @param len * the number of elements to swap starting with the given indices * @since 3.5 */ public static void swap(final float[] array,int offset1,int offset2,int len){ if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length){ return; } if (offset1 < 0){ offset1 = 0; } if (offset2 < 0){ offset2 = 0; } len = Math.min(Math.min(len, array.length - offset1), array.length - offset2); for (int i = 0; i < len; i++, offset1++, offset2++){ final float aux = array[offset1]; array[offset1] = array[offset2]; array[offset2] = aux; } } /** * Swaps two elements in the given int array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for a {@code null} or empty input array or for overflow indices. * Negative indices are promoted to 0(zero). *

* * Examples: *
    *
  • ArrayUtils.swap([1, 2, 3], 0, 2) -> [3, 2, 1]
  • *
  • ArrayUtils.swap([1, 2, 3], 0, 0) -> [1, 2, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], 1, 0) -> [2, 1, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], 0, 5) -> [1, 2, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], -1, 1) -> [2, 1, 3]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element to swap * @param offset2 * the index of the second element to swap * @since 3.5 */ public static void swap(final int[] array,final int offset1,final int offset2){ if (isEmpty(array)){ return; } swap(array, offset1, offset2, 1); } /** * Swaps a series of elements in the given int array. * *

* This method does nothing for a {@code null} or empty input array or * for overflow indices. Negative indices are promoted to 0(zero). If any * of the sub-arrays to swap falls outside of the given array, then the * swap is stopped at the end of the array and as many as possible elements * are swapped. *

* * Examples: *
    *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 2, 1) -> [3, 2, 1, 4]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 0, 1) -> [1, 2, 3, 4]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 2, 0, 2) -> [3, 4, 1, 2]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], -3, 2, 2) -> [3, 4, 1, 2]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 3, 3) -> [4, 2, 3, 1]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element in the series to swap * @param offset2 * the index of the second element in the series to swap * @param len * the number of elements to swap starting with the given indices * @since 3.5 */ public static void swap(final int[] array,int offset1,int offset2,int len){ if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length){ return; } if (offset1 < 0){ offset1 = 0; } if (offset2 < 0){ offset2 = 0; } len = Math.min(Math.min(len, array.length - offset1), array.length - offset2); for (int i = 0; i < len; i++, offset1++, offset2++){ final int aux = array[offset1]; array[offset1] = array[offset2]; array[offset2] = aux; } } /** * Swaps two elements in the given long array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for a {@code null} or empty input array or for overflow indices. * Negative indices are promoted to 0(zero). *

* * Examples: *
    *
  • ArrayUtils.swap([true, false, true], 0, 2) -> [true, false, true]
  • *
  • ArrayUtils.swap([true, false, true], 0, 0) -> [true, false, true]
  • *
  • ArrayUtils.swap([true, false, true], 1, 0) -> [false, true, true]
  • *
  • ArrayUtils.swap([true, false, true], 0, 5) -> [true, false, true]
  • *
  • ArrayUtils.swap([true, false, true], -1, 1) -> [false, true, true]
  • *
* * * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element to swap * @param offset2 * the index of the second element to swap * @since 3.5 */ public static void swap(final long[] array,final int offset1,final int offset2){ if (isEmpty(array)){ return; } swap(array, offset1, offset2, 1); } /** * Swaps a series of elements in the given long array. * *

* This method does nothing for a {@code null} or empty input array or * for overflow indices. Negative indices are promoted to 0(zero). If any * of the sub-arrays to swap falls outside of the given array, then the * swap is stopped at the end of the array and as many as possible elements * are swapped. *

* * Examples: *
    *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 2, 1) -> [3, 2, 1, 4]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 0, 1) -> [1, 2, 3, 4]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 2, 0, 2) -> [3, 4, 1, 2]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], -3, 2, 2) -> [3, 4, 1, 2]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 3, 3) -> [4, 2, 3, 1]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element in the series to swap * @param offset2 * the index of the second element in the series to swap * @param len * the number of elements to swap starting with the given indices * @since 3.5 */ public static void swap(final long[] array,int offset1,int offset2,int len){ if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length){ return; } if (offset1 < 0){ offset1 = 0; } if (offset2 < 0){ offset2 = 0; } len = Math.min(Math.min(len, array.length - offset1), array.length - offset2); for (int i = 0; i < len; i++, offset1++, offset2++){ final long aux = array[offset1]; array[offset1] = array[offset2]; array[offset2] = aux; } } // Swap //----------------------------------------------------------------------- /** * Swaps two elements in the given array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for a {@code null} or empty input array or for overflow indices. * Negative indices are promoted to 0(zero). *

* * Examples: *
    *
  • ArrayUtils.swap(["1", "2", "3"], 0, 2) -> ["3", "2", "1"]
  • *
  • ArrayUtils.swap(["1", "2", "3"], 0, 0) -> ["1", "2", "3"]
  • *
  • ArrayUtils.swap(["1", "2", "3"], 1, 0) -> ["2", "1", "3"]
  • *
  • ArrayUtils.swap(["1", "2", "3"], 0, 5) -> ["1", "2", "3"]
  • *
  • ArrayUtils.swap(["1", "2", "3"], -1, 1) -> ["2", "1", "3"]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element to swap * @param offset2 * the index of the second element to swap * @since 3.5 */ public static void swap(final Object[] array,final int offset1,final int offset2){ if (isEmpty(array)){ return; } swap(array, offset1, offset2, 1); } /** * Swaps a series of elements in the given array. * *

* This method does nothing for a {@code null} or empty input array or * for overflow indices. Negative indices are promoted to 0(zero). If any * of the sub-arrays to swap falls outside of the given array, then the * swap is stopped at the end of the array and as many as possible elements * are swapped. *

* * Examples: *
    *
  • ArrayUtils.swap(["1", "2", "3", "4"], 0, 2, 1) -> ["3", "2", "1", "4"]
  • *
  • ArrayUtils.swap(["1", "2", "3", "4"], 0, 0, 1) -> ["1", "2", "3", "4"]
  • *
  • ArrayUtils.swap(["1", "2", "3", "4"], 2, 0, 2) -> ["3", "4", "1", "2"]
  • *
  • ArrayUtils.swap(["1", "2", "3", "4"], -3, 2, 2) -> ["3", "4", "1", "2"]
  • *
  • ArrayUtils.swap(["1", "2", "3", "4"], 0, 3, 3) -> ["4", "2", "3", "1"]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element in the series to swap * @param offset2 * the index of the second element in the series to swap * @param len * the number of elements to swap starting with the given indices * @since 3.5 */ public static void swap(final Object[] array,int offset1,int offset2,int len){ if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length){ return; } if (offset1 < 0){ offset1 = 0; } if (offset2 < 0){ offset2 = 0; } len = Math.min(Math.min(len, array.length - offset1), array.length - offset2); for (int i = 0; i < len; i++, offset1++, offset2++){ final Object aux = array[offset1]; array[offset1] = array[offset2]; array[offset2] = aux; } } /** * Swaps two elements in the given short array. * *

* There is no special handling for multi-dimensional arrays. This method * does nothing for a {@code null} or empty input array or for overflow indices. * Negative indices are promoted to 0(zero). *

* * Examples: *
    *
  • ArrayUtils.swap([1, 2, 3], 0, 2) -> [3, 2, 1]
  • *
  • ArrayUtils.swap([1, 2, 3], 0, 0) -> [1, 2, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], 1, 0) -> [2, 1, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], 0, 5) -> [1, 2, 3]
  • *
  • ArrayUtils.swap([1, 2, 3], -1, 1) -> [2, 1, 3]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element to swap * @param offset2 * the index of the second element to swap * @since 3.5 */ public static void swap(final short[] array,final int offset1,final int offset2){ if (isEmpty(array)){ return; } swap(array, offset1, offset2, 1); } /** * Swaps a series of elements in the given short array. * *

* This method does nothing for a {@code null} or empty input array or * for overflow indices. Negative indices are promoted to 0(zero). If any * of the sub-arrays to swap falls outside of the given array, then the * swap is stopped at the end of the array and as many as possible elements * are swapped. *

* * Examples: *
    *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 2, 1) -> [3, 2, 1, 4]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 0, 1) -> [1, 2, 3, 4]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 2, 0, 2) -> [3, 4, 1, 2]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], -3, 2, 2) -> [3, 4, 1, 2]
  • *
  • ArrayUtils.swap([1, 2, 3, 4], 0, 3, 3) -> [4, 2, 3, 1]
  • *
* * @param array * the array to swap, may be {@code null} * @param offset1 * the index of the first element in the series to swap * @param offset2 * the index of the second element in the series to swap * @param len * the number of elements to swap starting with the given indices * @since 3.5 */ public static void swap(final short[] array,int offset1,int offset2,int len){ if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length){ return; } if (offset1 < 0){ offset1 = 0; } if (offset2 < 0){ offset2 = 0; } if (offset1 == offset2){ return; } len = Math.min(Math.min(len, array.length - offset1), array.length - offset2); for (int i = 0; i < len; i++, offset1++, offset2++){ final short aux = array[offset1]; array[offset1] = array[offset2]; array[offset2] = aux; } } // Generic array //----------------------------------------------------------------------- /** *

* Create a type-safe generic array. * *

* The Java language does not allow an array to be created from a generic type: * *

     * 
     * public static <T> T[] createAnArray(int size){
     *     return new T[size]; // compiler error here
     * }
     * 
     * public static <T> T[] createAnArray(int size){
     *     return (T[]) new Object[size]; // ClassCastException at runtime
     * }
     * 
* *

* Therefore new arrays of generic types can be created with this method. * For example, an array of Strings can be created: * *

     * 
     * String[] array = ArrayUtils.toArray("1", "2");
     * 
     * String[] emptyArray = ArrayUtils.<String> toArray();
     * 
* *

* The method is typically used in scenarios, where the caller itself uses generic types * that have to be combined into an array. * *

* Note, this method makes only sense to provide arguments of the same type so that the * compiler can deduce the type of the array itself. While it is possible to select the * type explicitly like in * {@code Number[] array = ArrayUtils.<Number>toArray(Integer.valueOf(42), Double.valueOf(Math.PI))}, * there is no real advantage when compared to * {@code new Number[] {Integer.valueOf(42), Double.valueOf(Math.PI)}}. * * @param * the array's element type * @param items * the varargs array items, null allowed * @return the array, not null unless a null array is passed in * @since 3.0 */ public static T[] toArray(@SuppressWarnings("unchecked") final T...items){ return items; } // To map //----------------------------------------------------------------------- /** *

* Converts the given array into a {@link java.util.Map}. Each element of the array * must be either a {@link java.util.Map.Entry} or an Array, containing at least two * elements, where the first element is used as key and the second as * value. * *

* This method can be used to initialize: * *

     * 
     * // Create a Map mapping colors.
     * Map colorMap = ArrayUtils.toMap(new String[][] { { "RED", "#FF0000" }, { "GREEN", "#00FF00" }, { "BLUE", "#0000FF" } });
     * 
* *

* This method returns {@code null} for a {@code null} input array. * * @param array * an array whose elements are either a {@link java.util.Map.Entry} or * an Array containing at least two elements, may be {@code null} * @return a {@code Map} that was created from the array * @throws IllegalArgumentException * if one element of this Array is * itself an Array containing less then two elements * @throws IllegalArgumentException * if the array contains elements other * than {@link java.util.Map.Entry} and an Array */ public static Map toMap(final Object[] array){ if (array == null){ return null; } final Map map = new HashMap<>((int) (array.length * 1.5)); for (int i = 0; i < array.length; i++){ final Object object = array[i]; if (object instanceof Map.Entry){ final Map.Entry entry = (Map.Entry) object; map.put(entry.getKey(), entry.getValue()); }else if (object instanceof Object[]){ final Object[] entry = (Object[]) object; if (entry.length < 2){ throw new IllegalArgumentException("Array element " + i + ", '" + object + "', has a length less than 2"); } map.put(entry[0], entry[1]); }else{ throw new IllegalArgumentException("Array element " + i + ", '" + object + "', is neither of type Map.Entry nor an Array"); } } return map; } /** *

* Converts an array of primitive booleans to objects. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code boolean} array * @return a {@code Boolean} array, {@code null} if null array input */ public static Boolean[] toObject(final boolean[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_BOOLEAN_OBJECT_ARRAY; } final Boolean[] result = new Boolean[array.length]; for (int i = 0; i < array.length; i++){ result[i] = (array[i] ? Boolean.TRUE : Boolean.FALSE); } return result; } /** *

* Converts an array of primitive bytes to objects. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code byte} array * @return a {@code Byte} array, {@code null} if null array input */ public static Byte[] toObject(final byte[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_BYTE_OBJECT_ARRAY; } final Byte[] result = new Byte[array.length]; for (int i = 0; i < array.length; i++){ result[i] = Byte.valueOf(array[i]); } return result; } /** *

* Converts an array of primitive chars to objects. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code char} array * @return a {@code Character} array, {@code null} if null array input */ public static Character[] toObject(final char[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_CHARACTER_OBJECT_ARRAY; } final Character[] result = new Character[array.length]; for (int i = 0; i < array.length; i++){ result[i] = Character.valueOf(array[i]); } return result; } /** *

* Converts an array of primitive doubles to objects. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code double} array * @return a {@code Double} array, {@code null} if null array input */ public static Double[] toObject(final double[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_DOUBLE_OBJECT_ARRAY; } final Double[] result = new Double[array.length]; for (int i = 0; i < array.length; i++){ result[i] = Double.valueOf(array[i]); } return result; } /** *

* Converts an array of primitive floats to objects. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code float} array * @return a {@code Float} array, {@code null} if null array input */ public static Float[] toObject(final float[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_FLOAT_OBJECT_ARRAY; } final Float[] result = new Float[array.length]; for (int i = 0; i < array.length; i++){ result[i] = Float.valueOf(array[i]); } return result; } /** *

* Converts an array of primitive ints to objects. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * an {@code int} array * @return an {@code Integer} array, {@code null} if null array input */ public static Integer[] toObject(final int[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_INTEGER_OBJECT_ARRAY; } final Integer[] result = new Integer[array.length]; for (int i = 0; i < array.length; i++){ result[i] = Integer.valueOf(array[i]); } return result; } /** *

* Converts an array of primitive longs to objects. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code long} array * @return a {@code Long} array, {@code null} if null array input */ public static Long[] toObject(final long[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_LONG_OBJECT_ARRAY; } final Long[] result = new Long[array.length]; for (int i = 0; i < array.length; i++){ result[i] = Long.valueOf(array[i]); } return result; } /** *

* Converts an array of primitive shorts to objects. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code short} array * @return a {@code Short} array, {@code null} if null array input */ public static Short[] toObject(final short[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_SHORT_OBJECT_ARRAY; } final Short[] result = new Short[array.length]; for (int i = 0; i < array.length; i++){ result[i] = Short.valueOf(array[i]); } return result; } // Boolean array converters // ---------------------------------------------------------------------- /** *

* Converts an array of object Booleans to primitives. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Boolean} array, may be {@code null} * @return a {@code boolean} array, {@code null} if null array input * @throws NullPointerException * if array content is {@code null} */ public static boolean[] toPrimitive(final Boolean[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_BOOLEAN_ARRAY; } final boolean[] result = new boolean[array.length]; for (int i = 0; i < array.length; i++){ result[i] = array[i].booleanValue(); } return result; } /** *

* Converts an array of object Booleans to primitives handling {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Boolean} array, may be {@code null} * @param valueForNull * the value to insert if {@code null} found * @return a {@code boolean} array, {@code null} if null array input */ public static boolean[] toPrimitive(final Boolean[] array,final boolean valueForNull){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_BOOLEAN_ARRAY; } final boolean[] result = new boolean[array.length]; for (int i = 0; i < array.length; i++){ final Boolean b = array[i]; result[i] = (b == null ? valueForNull : b.booleanValue()); } return result; } // Byte array converters // ---------------------------------------------------------------------- /** *

* Converts an array of object Bytes to primitives. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Byte} array, may be {@code null} * @return a {@code byte} array, {@code null} if null array input * @throws NullPointerException * if array content is {@code null} */ public static byte[] toPrimitive(final Byte[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_BYTE_ARRAY; } final byte[] result = new byte[array.length]; for (int i = 0; i < array.length; i++){ result[i] = array[i].byteValue(); } return result; } /** *

* Converts an array of object Bytes to primitives handling {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Byte} array, may be {@code null} * @param valueForNull * the value to insert if {@code null} found * @return a {@code byte} array, {@code null} if null array input */ public static byte[] toPrimitive(final Byte[] array,final byte valueForNull){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_BYTE_ARRAY; } final byte[] result = new byte[array.length]; for (int i = 0; i < array.length; i++){ final Byte b = array[i]; result[i] = (b == null ? valueForNull : b.byteValue()); } return result; } // Character array converters // ---------------------------------------------------------------------- /** *

* Converts an array of object Characters to primitives. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Character} array, may be {@code null} * @return a {@code char} array, {@code null} if null array input * @throws NullPointerException * if array content is {@code null} */ public static char[] toPrimitive(final Character[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_CHAR_ARRAY; } final char[] result = new char[array.length]; for (int i = 0; i < array.length; i++){ result[i] = array[i].charValue(); } return result; } /** *

* Converts an array of object Character to primitives handling {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Character} array, may be {@code null} * @param valueForNull * the value to insert if {@code null} found * @return a {@code char} array, {@code null} if null array input */ public static char[] toPrimitive(final Character[] array,final char valueForNull){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_CHAR_ARRAY; } final char[] result = new char[array.length]; for (int i = 0; i < array.length; i++){ final Character b = array[i]; result[i] = (b == null ? valueForNull : b.charValue()); } return result; } // Double array converters // ---------------------------------------------------------------------- /** *

* Converts an array of object Doubles to primitives. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Double} array, may be {@code null} * @return a {@code double} array, {@code null} if null array input * @throws NullPointerException * if array content is {@code null} */ public static double[] toPrimitive(final Double[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_DOUBLE_ARRAY; } final double[] result = new double[array.length]; for (int i = 0; i < array.length; i++){ result[i] = array[i].doubleValue(); } return result; } /** *

* Converts an array of object Doubles to primitives handling {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Double} array, may be {@code null} * @param valueForNull * the value to insert if {@code null} found * @return a {@code double} array, {@code null} if null array input */ public static double[] toPrimitive(final Double[] array,final double valueForNull){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_DOUBLE_ARRAY; } final double[] result = new double[array.length]; for (int i = 0; i < array.length; i++){ final Double b = array[i]; result[i] = (b == null ? valueForNull : b.doubleValue()); } return result; } // Float array converters // ---------------------------------------------------------------------- /** *

* Converts an array of object Floats to primitives. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Float} array, may be {@code null} * @return a {@code float} array, {@code null} if null array input * @throws NullPointerException * if array content is {@code null} */ public static float[] toPrimitive(final Float[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_FLOAT_ARRAY; } final float[] result = new float[array.length]; for (int i = 0; i < array.length; i++){ result[i] = array[i].floatValue(); } return result; } /** *

* Converts an array of object Floats to primitives handling {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Float} array, may be {@code null} * @param valueForNull * the value to insert if {@code null} found * @return a {@code float} array, {@code null} if null array input */ public static float[] toPrimitive(final Float[] array,final float valueForNull){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_FLOAT_ARRAY; } final float[] result = new float[array.length]; for (int i = 0; i < array.length; i++){ final Float b = array[i]; result[i] = (b == null ? valueForNull : b.floatValue()); } return result; } // Int array converters // ---------------------------------------------------------------------- /** *

* Converts an array of object Integers to primitives. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Integer} array, may be {@code null} * @return an {@code int} array, {@code null} if null array input * @throws NullPointerException * if array content is {@code null} */ public static int[] toPrimitive(final Integer[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_INT_ARRAY; } final int[] result = new int[array.length]; for (int i = 0; i < array.length; i++){ result[i] = array[i].intValue(); } return result; } /** *

* Converts an array of object Integer to primitives handling {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Integer} array, may be {@code null} * @param valueForNull * the value to insert if {@code null} found * @return an {@code int} array, {@code null} if null array input */ public static int[] toPrimitive(final Integer[] array,final int valueForNull){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_INT_ARRAY; } final int[] result = new int[array.length]; for (int i = 0; i < array.length; i++){ final Integer b = array[i]; result[i] = (b == null ? valueForNull : b.intValue()); } return result; } // Long array converters // ---------------------------------------------------------------------- /** *

* Converts an array of object Longs to primitives. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Long} array, may be {@code null} * @return a {@code long} array, {@code null} if null array input * @throws NullPointerException * if array content is {@code null} */ public static long[] toPrimitive(final Long[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_LONG_ARRAY; } final long[] result = new long[array.length]; for (int i = 0; i < array.length; i++){ result[i] = array[i].longValue(); } return result; } /** *

* Converts an array of object Long to primitives handling {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Long} array, may be {@code null} * @param valueForNull * the value to insert if {@code null} found * @return a {@code long} array, {@code null} if null array input */ public static long[] toPrimitive(final Long[] array,final long valueForNull){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_LONG_ARRAY; } final long[] result = new long[array.length]; for (int i = 0; i < array.length; i++){ final Long b = array[i]; result[i] = (b == null ? valueForNull : b.longValue()); } return result; } /** *

* Create an array of primitive type from an array of wrapper types. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * an array of wrapper object * @return an array of the corresponding primitive type, or the original array * @since 3.5 */ public static Object toPrimitive(final Object array){ if (array == null){ return null; } final Class ct = array.getClass().getComponentType(); final Class pt = ClassUtils.wrapperToPrimitive(ct); if (Integer.TYPE.equals(pt)){ return toPrimitive((Integer[]) array); } if (Long.TYPE.equals(pt)){ return toPrimitive((Long[]) array); } if (Short.TYPE.equals(pt)){ return toPrimitive((Short[]) array); } if (Double.TYPE.equals(pt)){ return toPrimitive((Double[]) array); } if (Float.TYPE.equals(pt)){ return toPrimitive((Float[]) array); } return array; } // Short array converters // ---------------------------------------------------------------------- /** *

* Converts an array of object Shorts to primitives. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Short} array, may be {@code null} * @return a {@code byte} array, {@code null} if null array input * @throws NullPointerException * if array content is {@code null} */ public static short[] toPrimitive(final Short[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_SHORT_ARRAY; } final short[] result = new short[array.length]; for (int i = 0; i < array.length; i++){ result[i] = array[i].shortValue(); } return result; } /** *

* Converts an array of object Short to primitives handling {@code null}. * *

* This method returns {@code null} for a {@code null} input array. * * @param array * a {@code Short} array, may be {@code null} * @param valueForNull * the value to insert if {@code null} found * @return a {@code byte} array, {@code null} if null array input */ public static short[] toPrimitive(final Short[] array,final short valueForNull){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_SHORT_ARRAY; } final short[] result = new short[array.length]; for (int i = 0; i < array.length; i++){ final Short b = array[i]; result[i] = (b == null ? valueForNull : b.shortValue()); } return result; } // Basic methods handling multi-dimensional arrays //----------------------------------------------------------------------- /** *

* Outputs an array as a String, treating {@code null} as an empty array. * *

* Multi-dimensional arrays are handled correctly, including * multi-dimensional primitive arrays. * *

* The format is that of Java source code, for example {@code {a,b}}. * * @param array * the array to get a toString for, may be {@code null} * @return a String representation of the array, '{}' if null array input */ public static String toString(final Object array){ return toString(array, "{}"); } /** *

* Outputs an array as a String handling {@code null}s. * *

* Multi-dimensional arrays are handled correctly, including * multi-dimensional primitive arrays. * *

* The format is that of Java source code, for example {@code {a,b}}. * * @param array * the array to get a toString for, may be {@code null} * @param stringIfNull * the String to return if the array is {@code null} * @return a String representation of the array */ public static String toString(final Object array,final String stringIfNull){ if (array == null){ return stringIfNull; } return new ToStringBuilder(array, ToStringStyle.SIMPLE_STYLE).append(array).toString(); } /** *

* Returns an array containing the string representation of each element in the argument array. *

* *

* This method returns {@code null} for a {@code null} input array. *

* * @param array * the {@code Object[]} to be processed, may be null * @return {@code String[]} of the same size as the source with its element's string representation, * {@code null} if null array input * @throws NullPointerException * if array contains {@code null} * @since 3.6 */ public static String[] toStringArray(final Object[] array){ if (array == null){ return null; }else if (array.length == 0){ return EMPTY_STRING_ARRAY; } final String[] result = new String[array.length]; for (int i = 0; i < array.length; i++){ result[i] = array[i].toString(); } return result; } /** *

* Returns an array containing the string representation of each element in the argument * array handling {@code null} elements. *

* *

* This method returns {@code null} for a {@code null} input array. *

* * @param array * the Object[] to be processed, may be null * @param valueForNullElements * the value to insert if {@code null} is found * @return a {@code String} array, {@code null} if null array input * @since 3.6 */ public static String[] toStringArray(final Object[] array,final String valueForNullElements){ if (null == array){ return null; }else if (array.length == 0){ return EMPTY_STRING_ARRAY; } final String[] result = new String[array.length]; for (int i = 0; i < array.length; i++){ final Object object = array[i]; result[i] = (object == null ? valueForNullElements : object.toString()); } return result; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy