parsley.token.numeric.UnsignedCombined.scala Maven / Gradle / Ivy
/* SPDX-FileCopyrightText: © 2022 Parsley Contributors
* SPDX-License-Identifier: BSD-3-Clause
*/
package parsley.token.numeric
import parsley.Parsley, Parsley.attempt
import parsley.XCompat.unused
import parsley.token.descriptions.numeric.NumericDesc
import parsley.token.errors.ErrorConfig
private [token] final class UnsignedCombined(@unused desc: NumericDesc, integer: Integer, rational: Real, err: ErrorConfig) extends Combined(err) {
override lazy val decimal: Parsley[Either[BigInt, BigDecimal]] = (attempt(rational.decimal) <+> integer.decimal).map(_.swap)
override lazy val hexadecimal: Parsley[Either[BigInt, BigDecimal]] = (attempt(rational.hexadecimal) <+> integer.hexadecimal).map(_.swap)
override lazy val octal: Parsley[Either[BigInt, BigDecimal]] = (attempt(rational.octal) <+> integer.octal).map(_.swap)
override lazy val binary: Parsley[Either[BigInt, BigDecimal]] = (attempt(rational.binary) <+> integer.binary).map(_.swap)
override lazy val number: Parsley[Either[BigInt, BigDecimal]] = (attempt(rational.number) <+> integer.number).map(_.swap)
// FIXME: gross :( we should restructure this to be more reusable friendly
// FIXME: This doesn't respect the number requirements on hex oct bin for both integer and rational
// FIXME: It also doesn't account for the trailing and leading dot
// FIXME: It also doesn't respect exponent descriptions
/*{
val decFractional = '.' *> digit.foldRight1[BigDecimal](0)((d, x) => x/10 + d.asDigit)
// TODO: This integer needs to have the description altered to account for the sign presence
val decExponent = oneOf('e', 'E') *> integer.decimal32
val zeroPoint = (decFractional, decExponent <|> pure(0)).zipped[Either[BigInt, BigDecimal]] {
case (f, e) => Right(f / 10 * BigDecimal(10).pow(e))
} <|> decExponent #> Right(BigDecimal(0))
val zeroLead = '0' *> (noZeroHexadecimal <|> noZeroOctal <|> noZeroBinary <|> zeroPoint <|> decimal <|> pure(Left(BigInt(0))))
attempt(zeroLead <|> decimal)
}*/
// TODO: Using choice here will generate a jump table, which will be nicer for `number` (this requires enhancements to the jumptable optimisation)
// TODO: Leave these as defs so they get inlined into number for the jumptable optimisation
//private val noZeroHexadecimal = oneOf(desc.hexadecimalLeads) *> ofRadix(16, 2, hexDigit, oneOf('p', 'P'))
//private val noZeroOctal = oneOf(desc.octalLeads) *> ofRadix(8, 8, octDigit, oneOf('p', 'P'))
//private val noZeroBinary = oneOf(desc.binaryLeads) *> ofRadix(2, 2, oneOf('0', '1'), oneOf('p', 'P'))
override protected [numeric] def bounded[T](number: Parsley[Either[BigInt, BigDecimal]], bits: Bits, radix: Int)
(implicit ev: CanHold[bits.self,T]): Parsley[Either[T, BigDecimal]] = {
err.filterIntegerOutOfBounds(min = 0, bits.upperUnsigned, radix).injectLeft.collect(number) {
case Left(x) if x <= bits.upperUnsigned => Left(ev.fromBigInt(x))
case Right(x) => Right(x)
}
}
// This isn't quite accurate: for non decimal floats the exponent is required, but for wholes it is not
/*private def ofRadix(radix: Int, base: Int, digit: Parsley[Char], exp: Parsley[Char]) = {
// could allow for foldLeft and foldRight here!
// this reuses components of natural numbers, which will prevent duplication in a larger parser
val whole = radix match {
case 10 => integer.plainDecimal
case 16 => integer.plainHexadecimal
case 8 => integer.plainOctal
case 2 => integer.plainBinary
}
val fractional = '.' *> digit.foldRight1[BigDecimal](0)((d, x) => x/radix + d.asDigit)
val exponent = exp *> integer.decimal32
//(whole, (fractional <~> exponent) <+> fractional
if (radix == 10) {
(whole, option(fractional), option(exponent)).zipped[Either[BigInt, BigDecimal]] {
case (w, None, None) => Left(w)
case (w, Some(f), None) => Right(BigDecimal(w) + f / radix)
case (w, None, Some(e)) => Right(BigDecimal(w) * BigDecimal(base).pow(e))
case (w, Some(f), Some(e)) => Right((BigDecimal(w) + f / radix) * BigDecimal(base).pow(e))
}
}
else {
(whole, option((fractional <~> exponent) <+> exponent)).zipped[Either[BigInt, BigDecimal]] {
case (w, None) => Left(w)
case (w, Some(Left((f, e)))) => Right((BigDecimal(w) + f / radix) * BigDecimal(base).pow(e))
case (w, Some(Right(e))) => Right(BigDecimal(w) * BigDecimal(base).pow(e))
}
}
}*/
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy