jj2000.j2k.image.invcomptransf.InvCompTransf Maven / Gradle / Ivy
Show all versions of jai-imageio-jpeg2000 Show documentation
/*
* $RCSfile: InvCompTransf.java,v $
* $Revision: 1.1 $
* $Date: 2005/02/11 05:02:14 $
* $State: Exp $
*
* Class: InvCompTransf
*
* Description: Inverse Component transformations applied to tiles
*
*
*
* COPYRIGHT:
*
* This software module was originally developed by Raphaël Grosbois and
* Diego Santa Cruz (Swiss Federal Institute of Technology-EPFL); Joel
* Askelöf (Ericsson Radio Systems AB); and Bertrand Berthelot, David
* Bouchard, Félix Henry, Gerard Mozelle and Patrice Onno (Canon Research
* Centre France S.A) in the course of development of the JPEG2000
* standard as specified by ISO/IEC 15444 (JPEG 2000 Standard). This
* software module is an implementation of a part of the JPEG 2000
* Standard. Swiss Federal Institute of Technology-EPFL, Ericsson Radio
* Systems AB and Canon Research Centre France S.A (collectively JJ2000
* Partners) agree not to assert against ISO/IEC and users of the JPEG
* 2000 Standard (Users) any of their rights under the copyright, not
* including other intellectual property rights, for this software module
* with respect to the usage by ISO/IEC and Users of this software module
* or modifications thereof for use in hardware or software products
* claiming conformance to the JPEG 2000 Standard. Those intending to use
* this software module in hardware or software products are advised that
* their use may infringe existing patents. The original developers of
* this software module, JJ2000 Partners and ISO/IEC assume no liability
* for use of this software module or modifications thereof. No license
* or right to this software module is granted for non JPEG 2000 Standard
* conforming products. JJ2000 Partners have full right to use this
* software module for his/her own purpose, assign or donate this
* software module to any third party and to inhibit third parties from
* using this software module for non JPEG 2000 Standard conforming
* products. This copyright notice must be included in all copies or
* derivative works of this software module.
*
* Copyright (c) 1999/2000 JJ2000 Partners.
* */
package jj2000.j2k.image.invcomptransf;
import jj2000.j2k.ModuleSpec;
import jj2000.j2k.decoder.DecoderSpecs;
import jj2000.j2k.image.BlkImgDataSrc;
import jj2000.j2k.image.CompTransfSpec;
import jj2000.j2k.image.DataBlk;
import jj2000.j2k.image.DataBlkFloat;
import jj2000.j2k.image.DataBlkInt;
import jj2000.j2k.image.ImgDataAdapter;
import jj2000.j2k.util.MathUtil;
import jj2000.j2k.wavelet.synthesis.SynWTFilterSpec;
/**
* This class apply inverse component transformations to the tiles depending
* on specification read from the codestream header. These transformations can
* be used to improve compression efficiency but are not related to colour
* transforms used to map colour values for display purposes. JPEG 2000 part I
* defines 2 component transformations: RCT (Reversible Component
* Transformation) and ICT (Irreversible Component Transformation).
*
* @see ModuleSpec
* */
public class InvCompTransf extends ImgDataAdapter
implements BlkImgDataSrc{
/** Identifier for no component transformation. Value is 0. */
public static final int NONE = 0;
/** The prefix for inverse component transformation options: 'M' */
public final static char OPT_PREFIX = 'M';
/** The list of parameters that is accepted by the inverse
* component transformation module. They start with 'M'. */
private final static String [][] pinfo = null;
/** Identifier for the Inverse Reversible Component Transformation
(INV_RCT). Value is 1. */
public static final int INV_RCT = 1;
/** Identifier for the Inverse Irreversible Component
Transformation (INV_ICT). Value is 2 */
public static final int INV_ICT = 2;
/** The source of image data */
private BlkImgDataSrc src;
/** The component transformations specifications */
private CompTransfSpec cts;
/** The wavelet filter specifications */
private SynWTFilterSpec wfs;
/** The type of the current component transformation JPEG 2000
* part I only support NONE, FORW_RCT and FORW_ICT types*/
private int transfType = NONE;
/** Buffer for each component of output data */
private int[][] outdata = new int[3][];
/** Block used to request component 0 */
private DataBlk block0;
/** Block used to request component 1 */
private DataBlk block1;
/** Block used to request component 2 */
private DataBlk block2;
/** Data block used only to store coordinates and progressiveness
of the buffered blocks */
private DataBlkInt dbi = new DataBlkInt();
/** The bit-depths of un-transformed components */
private int utdepth[];
/** Flag indicating whether the decoder should skip the component
* transform*/
private boolean noCompTransf = false;
/**
* Constructs a new ForwCompTransf object that operates on the
* specified source of image data.
*
* @param imgSrc The source from where to get the data to be
* transformed
*
* @param decSpec The decoder specifications
*
* @see BlkImgDataSrc
* */
public InvCompTransf(BlkImgDataSrc imgSrc, DecoderSpecs decSpec,
int[] utdepth) {
super(imgSrc);
this.cts = decSpec.cts;
this.wfs = decSpec.wfs;
src = imgSrc;
this.utdepth = utdepth;
}
/**
* Returns the parameters that are used in this class and implementing
* classes. It returns a 2D String array. Each of the 1D arrays is for a
* different option, and they have 4 elements. The first element is the
* option name, the second one is the synopsis, the third one is a long
* description of what the parameter is and the fourth is its default
* value. The synopsis or description may be 'null', in which case it is
* assumed that there is no synopsis or description of the option,
* respectively. Null may be returned if no options are supported.
*
* @return the options name, their synopsis and their explanation,
* or null if no options are supported.
* */
public static String[][] getParameterInfo() {
return pinfo;
}
/**
* Returns a string with a descriptive text of which inverse component
* transformation is used. This can be either "Inverse RCT" or "Inverse
* ICT" or "No component transformation" depending on the current tile.
*
* @return A descriptive string
* */
public String toString() {
switch(transfType){
case INV_RCT:
return "Inverse RCT";
case INV_ICT:
return "Inverse ICT";
case NONE:
return "No component transformation";
default:
throw new IllegalArgumentException("Non JPEG 2000 part I"+
" component transformation");
}
}
/**
* Returns true if this transform is reversible in current
* tile. Reversible component transformations are those which operation
* can be completely reversed without any loss of information (not even
* due to rounding).
*
* @return Reversibility of component transformation in current
* tile
* */
public boolean isReversible(){
switch(transfType){
case NONE:
case INV_RCT:
return true;
case INV_ICT:
return false;
default:
throw new IllegalArgumentException("Non JPEG 2000 part I"+
" component transformation");
}
}
/**
* Returns the position of the fixed point in the specified
* component. This is the position of the least significant integral
* (i.e. non-fractional) bit, which is equivalent to the number of
* fractional bits. For instance, for fixed-point values with 2 fractional
* bits, 2 is returned. For floating-point data this value does not apply
* and 0 should be returned. Position 0 is the position of the least
* significant bit in the data.
*
* This default implementation assumes that the number of fractional
* bits is not modified by the component mixer.
*
* @param c The index of the component.
*
* @return The value of the fixed point position of the source since the
* color transform does not affect it.
* */
public int getFixedPoint(int c) {
return src.getFixedPoint(c);
}
/**
* Calculates the bitdepths of the transformed components, given the
* bitdepth of the un-transformed components and the component
* tranformation type.
*
* @param utdepth The bitdepth of each un-transformed component
*
* @param ttype The type ID of the inverse component tranformation
*
* @param tdepth If not null the results are stored in this
* array, otherwise a new array is allocated and returned.
*
* @return The bitdepth of each transformed component.
* */
public static
int[] calcMixedBitDepths(int utdepth[], int ttype, int tdepth[]) {
if (utdepth.length < 3 && ttype != NONE) {
throw new IllegalArgumentException();
}
if (tdepth == null) {
tdepth = new int[utdepth.length];
}
switch (ttype) {
case NONE:
System.arraycopy(utdepth,0,tdepth,0,utdepth.length);
break;
case INV_RCT:
if (utdepth.length >3) {
System.arraycopy(utdepth,3,tdepth,3,utdepth.length-3);
}
// The formulas are:
// tdepth[0] = ceil(log2(2^(utdepth[0])+2^utdepth[1]+
// 2^(utdepth[2])))-2+1
// tdepth[1] = ceil(log2(2^(utdepth[0])+2^(utdepth[1])-1))+1
// tdepth[2] = ceil(log2(2^(utdepth[1])+2^(utdepth[2])-1))+1
// The MathUtil.log2(x) function calculates floor(log2(x)), so we
// use 'MathUtil.log2(2*x-1)+1', which calculates ceil(log2(x))
// for any x>=1, x integer.
tdepth[0] = MathUtil.log2((1<3) {
System.arraycopy(utdepth,3,tdepth,3,utdepth.length-3);
}
// The MathUtil.log2(x) function calculates floor(log2(x)), so we
// use 'MathUtil.log2(2*x-1)+1', which calculates ceil(log2(x))
// for any x>=1, x integer.
tdepth[0] =
MathUtil.log2((int)Math.floor((1<b then for unsigned data the
* nominal range is between 0 and 2^b-1, and for signed data it is between
* -2^(b-1) and 2^(b-1)-1.
*
* @param c The index of the component.
*
* @return The bitdepth of un-transformed component 'c'.
* */
public int getNomRangeBits(int c) {
return utdepth[c];
}
/**
* Apply inverse component transformation associated with the current
* tile. If no component transformation has been requested by the user,
* data are not modified.
*
* This method calls the getInternCompData() method, but respects the
* definitions of the getCompData() method defined in the BlkImgDataSrc
* interface.
*
* @param blk Determines the rectangular area to return, and the
* data is returned in this object.
*
* @param c Index of the output component.
*
* @return The requested DataBlk
*
* @see BlkImgDataSrc#getCompData
* */
public DataBlk getCompData(DataBlk blk, int c){
// If requesting a component whose index is greater than 3 or there is
// no transform return a copy of data (getInternCompData returns the
// actual data in those cases)
if (c>=3 || transfType == NONE) {
return src.getCompData(blk,c);
}
else { // We can use getInternCompData (since data is a copy anyways)
return getInternCompData(blk,c);
}
}
/**
* Apply the inverse component transformation associated with the current
* tile. If no component transformation has been requested by the user,
* data are not modified. Else, appropriate method is called (invRCT or
* invICT).
*
* @see #invRCT
*
* @see #invICT
*
* @param blk Determines the rectangular area to return.
*
* @param c Index of the output component.
*
* @return The requested DataBlk
* */
public DataBlk getInternCompData(DataBlk blk, int c){
// if specified in the command line that no component transform should
// be made, return original data
if(noCompTransf)
return src.getInternCompData(blk,c);
switch(transfType){
case NONE:
return src.getInternCompData(blk,c);
case INV_RCT:
return invRCT(blk,c);
case INV_ICT:
return invICT(blk,c);
default:
throw new IllegalArgumentException("Non JPEG 2000 part I"+
" component transformation");
}
}
/**
* Apply inverse component transformation to obtain requested component
* from specified block of data. Whatever the type of requested DataBlk,
* it always returns a DataBlkInt.
*
* @param blk Determine the rectangular area to return
*
* @param c The index of the requested component
*
* @return Data of requested component
* */
private DataBlk invRCT(DataBlk blk,int c){
// If the component number is three or greater, return original data
if (c>=3 && c < getNumComps()) {
// Requesting a component whose index is greater than 3
return src.getInternCompData(blk,c);
}
// If asking a component for the first time for this block,
// do transform for the 3 components
if ((outdata[c] == null)||
(dbi.ulx > blk.ulx) || (dbi.uly > blk.uly) ||
(dbi.ulx+dbi.w < blk.ulx+blk.w) ||
(dbi.uly+dbi.h < blk.uly+blk.h)) {
int k,k0,k1,k2,mink,i;
int w = blk.w; //width of output block
int h = blk.h; //height of ouput block
//Reference to output block data array
outdata[c] = (int[]) blk.getData();
//Create data array of blk if necessary
if(outdata[c] == null || outdata[c].length!=h*w){
outdata[c] = new int[h * w];
blk.setData(outdata[c]);
}
outdata[(c+1)%3] = new int[outdata[c].length];
outdata[(c+2)%3] = new int[outdata[c].length];
if(block0==null || block0.getDataType()!=DataBlk.TYPE_INT)
block0 = new DataBlkInt();
if(block1==null || block1.getDataType()!=DataBlk.TYPE_INT)
block1 = new DataBlkInt();
if(block2==null || block2.getDataType()!=DataBlk.TYPE_INT)
block2 = new DataBlkInt();
block0.w = block1.w = block2.w = blk.w;
block0.h = block1.h = block2.h = blk.h;
block0.ulx = block1.ulx = block2.ulx = blk.ulx;
block0.uly = block1.uly = block2.uly = blk.uly;
int data0[],data1[],data2[]; // input data arrays
// Fill in buffer blocks (to be read only)
// Returned blocks may have different size and position
block0 = (DataBlkInt)src.getInternCompData(block0, 0);
data0 = (int[]) block0.getData();
block1 = (DataBlkInt)src.getInternCompData(block1, 1);
data1 = (int[]) block1.getData();
block2 = (DataBlkInt)src.getInternCompData(block2, 2);
data2 = (int[]) block2.getData();
// Set the progressiveness of the output data
blk.progressive = block0.progressive || block1.progressive ||
block2.progressive;
blk.offset = 0;
blk.scanw = w;
// set attributes of the DataBlk used for buffering
dbi.progressive = blk.progressive;
dbi.ulx = blk.ulx;
dbi.uly = blk.uly;
dbi.w = blk.w;
dbi.h = blk.h;
// Perform conversion
// Initialize general indexes
k = w*h-1;
k0 = block0.offset+(h-1)*block0.scanw+w-1;
k1 = block1.offset+(h-1)*block1.scanw+w-1;
k2 = block2.offset+(h-1)*block2.scanw+w-1;
for( i = h-1; i >=0; i--){
for(mink = k-w; k > mink; k--, k0--, k1--, k2--){
outdata[1][k] = (data0[k0] - ((data1[k1]+data2[k2])>>2) );
outdata[0][k] = data2[k2] + outdata[1][k];
outdata[2][k] = data1[k1] + outdata[1][k];
}
// Jump to beggining of previous line in input
k0 -= block0.scanw - w;
k1 -= block1.scanw - w;
k2 -= block2.scanw - w;
}
outdata[c] = null;
}
else if((c>=0)&&(c<=3)){ //Asking for the 2nd or 3rd block component
blk.setData(outdata[c]);
blk.progressive = dbi.progressive;
blk.offset = (blk.uly-dbi.uly)*dbi.w+blk.ulx-dbi.ulx;
blk.scanw = dbi.w;
outdata[c] = null;
}
else {
// Requesting a non valid component index
throw new IllegalArgumentException();
}
return blk;
}
/**
* Apply inverse irreversible component transformation to obtain requested
* component from specified block of data. Whatever the type of requested
* DataBlk, it always returns a DataBlkFloat.
*
* @param blk Determine the rectangular area to return
*
* @param c The index of the requested component
*
* @return Data of requested component
* */
private DataBlk invICT(DataBlk blk,int c){
if(c>=3 && c=0; i--) {
for (mink = k-w; k > mink; k--, k0--) {
outdata[k] = (int) (indata[k0]);
}
// Jump to beggining of previous line in input
k0 -= indb.scanw - w;
}
// Set the progressivity and offset
blk.progressive = indb.progressive;
blk.offset = 0;
blk.scanw = w;
}
// If asking a component for the first time for this block,
// do transform for the 3 components
else if((outdata[c] == null)||
(dbi.ulx > blk.ulx) || (dbi.uly > blk.uly) ||
(dbi.ulx+dbi.w < blk.ulx+blk.w) ||
(dbi.uly+dbi.h < blk.uly+blk.h)) {
int k,k0,k1,k2,mink,i;
int w = blk.w; //width of output block
int h = blk.h; //height of ouput block
//Reference to output block data array
outdata[c] = (int[]) blk.getData();
//Create data array of blk if necessary
if(outdata[c] == null || outdata[c].length!=w*h){
outdata[c] = new int[h * w];
blk.setData(outdata[c]);
}
outdata[(c+1)%3] = new int[outdata[c].length];
outdata[(c+2)%3] = new int[outdata[c].length];
if(block0==null || block0.getDataType()!=DataBlk.TYPE_FLOAT)
block0 = new DataBlkFloat();
if(block2==null || block2.getDataType()!=DataBlk.TYPE_FLOAT)
block2 = new DataBlkFloat();
if(block1==null || block1.getDataType()!=DataBlk.TYPE_FLOAT)
block1 = new DataBlkFloat();
block0.w = block2.w = block1.w = blk.w;
block0.h = block2.h = block1.h = blk.h;
block0.ulx = block2.ulx = block1.ulx = blk.ulx;
block0.uly = block2.uly = block1.uly = blk.uly;
float data0[],data1[],data2[]; // input data arrays
// Fill in buffer blocks (to be read only)
// Returned blocks may have different size and position
block0 = (DataBlkFloat)src.getInternCompData(block0, 0);
data0 = (float[]) block0.getData();
block2 = (DataBlkFloat)src.getInternCompData(block2, 1);
data2 = (float[]) block2.getData();
block1 = (DataBlkFloat)src.getInternCompData(block1, 2);
data1 = (float[]) block1.getData();
// Set the progressiveness of the output data
blk.progressive = block0.progressive || block1.progressive ||
block2.progressive;
blk.offset = 0;
blk.scanw = w;
// set attributes of the DataBlk used for buffering
dbi.progressive = blk.progressive;
dbi.ulx = blk.ulx;
dbi.uly = blk.uly;
dbi.w = blk.w;
dbi.h = blk.h;
//Perform conversion
// Initialize general indexes
k = w*h-1;
k0 = block0.offset+(h-1)*block0.scanw+w-1;
k2 = block2.offset+(h-1)*block2.scanw+w-1;
k1 = block1.offset+(h-1)*block1.scanw+w-1;
for( i = h-1; i >=0; i--){
for(mink = k-w; k > mink; k--, k0--, k2--, k1--){
outdata[0][k] = (int)(data0[k0]+1.402f*data1[k1]+0.5f);
outdata[1][k] =
(int) (data0[k0]-0.34413f*data2[k2]-0.71414f*data1[k1]
+ 0.5f);
outdata[2][k] = (int)(data0[k0]+1.772f*data2[k2]+0.5f);
}
// Jump to beggining of previous line in input
k0 -= block0.scanw - w;
k2 -= block2.scanw - w;
k1 -= block1.scanw - w;
}
outdata[c] = null;
}
else if((c>=0)&&(c<=3)){//Asking for the 2nd or 3rd block component
blk.setData(outdata[c]);
blk.progressive = dbi.progressive;
blk.offset = (blk.uly-dbi.uly)*dbi.w+blk.ulx-dbi.ulx;
blk.scanw = dbi.w;
outdata[c] = null;
} else {
// Requesting a non valid component index
throw new IllegalArgumentException();
}
return blk;
}
/**
* Changes the current tile, given the new indexes. An
* IllegalArgumentException is thrown if the indexes do not
* correspond to a valid tile.
*
* This default implementation changes the tile in the source
* and re-initializes properly component transformation variables..
*
* @param x The horizontal index of the tile.
*
* @param y The vertical index of the new tile.
*
* */
public void setTile(int x, int y) {
src.setTile(x,y);
tIdx = getTileIdx(); // index of the current tile
// initializations
if( ((Integer)cts.getTileDef(tIdx)).intValue()==NONE )
transfType = NONE;
else {
int nc = src.getNumComps()> 3 ? 3 : src.getNumComps();
int rev = 0;
for(int c=0; cThis default implementation just advances to the next tile
* in the source and re-initializes properly component
* transformation variables.
*
* */
public void nextTile() {
src.nextTile();
tIdx = getTileIdx(); // index of the current tile
// initializations
if( ((Integer)cts.getTileDef(tIdx)).intValue()==NONE )
transfType = NONE;
else {
int nc = src.getNumComps() > 3 ? 3 : src.getNumComps();
int rev = 0;
for(int c=0; c