japgolly.microlibs.recursion.RecursionFn.scala Maven / Gradle / Ivy
The newest version!
package japgolly.microlibs.recursion
import scalaz.{Cofree, Comonad, Free, Functor, Monad, Traverse, ~>}
object RecursionFn {
def cata[F[_], A](alg: FAlgebra[F, A])(implicit F: Functor[F]): Fix[F] => A = {
var self: Fix[F] => A = null
self = f => alg(F.map(f.unfix)(self))
self
}
def cataM[M[_], F[_], A](alg: FAlgebraM[M, F, A])(implicit M: Monad[M], F: Traverse[F]): Fix[F] => M[A] = {
var self: Fix[F] => M[A] = null
self = f => M.bind(F.traverse(f.unfix)(self))(alg)
self
}
def ana[F[_], A](coalg: FCoalgebra[F, A])(implicit F: Functor[F]): A => Fix[F] = {
var self: A => Fix[F] = null
self = a => Fix[F](F.map(coalg(a))(self))
self
}
def anaM[M[_], F[_], A](coalg: FCoalgebraM[M, F, A])(implicit M: Monad[M], F: Traverse[F]): A => M[Fix[F]] = {
var self: A => M[Fix[F]] = null
self = a => M.bind(coalg(a))(fa => M.map(F.traverse(fa)(self))(Fix.apply[F]))
self
}
/** ana with immediate cata */
def hylo[F[_], A, B](coalg: FCoalgebra[F, A], alg: FAlgebra[F, B])(implicit F: Functor[F]): A => B = {
var self: A => B = null
self = a => alg(F.map(coalg(a))(self))
self
}
def hyloM[M[_], F[_], A, B](coalg: FCoalgebraM[M, F, A], alg: FAlgebraM[M, F, B])(implicit M: Monad[M], F: Traverse[F]): A => M[B] = {
var self: A => M[B] = null
self = a => M.bind(coalg(a))(fa => M.bind(F.traverse(fa)(self))(alg))
self
}
/** cata that transforms children before folding.
* Top-most structure (i.e. the input) is not transformed.
* Outside to inside.
*/
def prepro[F[_], A](pre: F ~> F, alg: FAlgebra[F, A])(implicit F: Functor[F]): Fix[F] => A = {
var self : Fix[F] => A = null
val algF : FAlgebra[F, Fix[F]] = f => Fix[F](pre(f))
val cataF: Fix[F] => Fix[F] = cata(algF)
val inner: Fix[F] => A = f => self(cataF(f))
self = f => alg(F.map(f.unfix)(inner))
/*
// Inspection
var space = ""
self = f => {
println(s"${space}F = ${f.toString.replace("ConsF(", "").replace(")", "")}")
space += " "
val step1 = f.unfix
val step2 = F.map(step1)(inner)
val step3 = alg(step2)
space = space.drop(2)
println(s"${space}FA = $step2")
println(s"${space} A = $step3")
step3
}
*/
self
}
/** ana that creates a structure, transforming each new child (i.e. the entire structure as exists at the end of a pass).
* Top-most structure (i.e. the end result) is not transformed.
* Inside to outside.
*/
def postpro[F[_], A](coalg: FCoalgebra[F, A], pro: F ~> F)(implicit F: Functor[F]): A => Fix[F] = {
var self : A => Fix[F] = null
val algF : FCoalgebra[F, Fix[F]] = f => pro(f.unfix)
val anaF : Fix[F] => Fix[F] = ana(algF)
val inner: A => Fix[F] = a => anaF(self(a))
self = a => Fix[F](F.map(coalg(a))(inner))
/*
// Inspection
var space = ""
self = a => {
space += " "
val step1 = coalg(a)
val step2 = Fix[F](F.map(coalg(a))(inner))
space = space.drop(2)
println(s"${space}/A = $a")
println(s"${space}FA = $step1")
println(s"${space}F = ${step2.toString.replace("ConsF(", "").replace(")", "")}")
step2
}
*/
self
}
/** hylo that can short-circuit on construction */
def elgot[F[_], A, B](elcoalg: A => B Either F[A], alg: FAlgebra[F, B])(implicit F: Functor[F]): A => B = {
var self: A => B = null
self = a => elcoalg(a) match {
case Right(fa) => alg(F.map(fa)(self))
case Left(b) => b
}
self
}
/** hylo that can short-circuit on reduction */
def coelgot[F[_], A, B](coalg: FCoalgebra[F, A], elalg: (A, () => F[B]) => B)(implicit F: Functor[F]): A => B = {
var self: A => B = null
self = a => elalg(a, () => F.map(coalg(a))(self))
self
}
/** cata that has access to current subtree (Fix[F]) as well as that subtree's folded result (A) */
def para[F[_], A](alg: RAlgebra[F, A])(implicit F: Functor[F]): Fix[F] => A = {
var self: Fix[F] => A = null
val fanout: Fix[F] => (Fix[F], A) = x => (x, self(x))
self = f => alg(F.map(f.unfix)(fanout))
self
}
/** ana that can branch / short-circuit */
def apo[F[_], A](coalg: RCoalgebra[F, A])(implicit F: Functor[F]): A => Fix[F] = {
var self: A => Fix[F] = null
val fanin: Either[Fix[F], A] => Fix[F] = {
case Left(f) => f
case Right(a) => self(a)
}
self = a => Fix[F](F.map(coalg(a))(fanin))
self
}
/** cata that retains values of all previous (i.e. child) steps */
def histo[F[_], A](alg: CVAlgebra[F, A])(implicit F: Functor[F]): Fix[F] => A = {
var self: Fix[F] => A = null
var step: Fix[F] => Cofree[F, A] = null
val x : Fix[F] => F[Cofree[F, A]] = f => F.map(f.unfix)(step)
self = f => alg(x(f))
step = f => Cofree(self(f), x(f))
// TODO Add variant?
// val m = collection.mutable.HashMap.empty[Fix[F], Cofree[F, A]]
// step = f => m.getOrElseUpdate(f, Cofree(self(f), x(f)))
self
}
/** ana that can build multiple levels in a single pass */
def futu[F[_], A](coalg: CVCoalgebra[F, A])(implicit F: Functor[F]): A => Fix[F] = {
var self: A => Fix[F] = null
var step: Free[F, A] => Fix[F] = null
self = a => Fix[F](F.map(coalg(a))(step))
step = _.fold(self, f => Fix(F.map(f)(step)))
self
}
/** hylo of futu into histo */
def chrono[F[_], A, B](coalg: CVCoalgebra[F, A], alg: CVAlgebra[F, B])(implicit F: Functor[F]): A => B =
// histo(alg)(futu(coalg)(a)) // Naive
ghylo[Cofree[F, *], F, Free[F, *], A, B](distHisto[F], distFutu[F], alg, coalg)
import ScalaVerSpecific.Coseq
private def ghylo[W[_], F[_], M[_], A, B](w: Coseq[F, W],
m: Coseq[M, F],
f: F[W[B]] => B,
g: A => F[M[A]]
)(implicit
W: Comonad[W],
F: Functor[F],
M: Monad[M]): A => B = {
val liftG: M[A] => M[F[M[A]]] = M.lift(g)
var h: M[A] => W[B] = null
h = ma => {
val fmma: F[M[M[A]]] = m(liftG(ma))
val fwwb: F[W[W[B]]] = F.map(fmma)(mma => W.cojoin(h(M.join(mma))))
W.map(w(fwwb))(f)
}
a => W.copoint(h(M.point(a)))
}
private def distHisto[F[_]](implicit F: Functor[F]): Coseq[F, Cofree[F, *]] =
new Coseq[F, Cofree[F, *]] {
override def apply[A](f: F[Cofree[F, A]]): Cofree[F, F[A]] =
Cofree.unfold[F, F[A], F[Cofree[F, A]]](f)(as =>
(F.map(as)(_.head), F.map(as)(_.tail)))
}
private def distFutu[F[_]](implicit F: Functor[F]): Coseq[Free[F, *], F] =
new Coseq[Free[F, *], F] {
override def apply[A](f: Free[F, F[A]]): F[Free[F, A]] =
f.fold(
F.map(_)(Free.pure),
F.map(_)(as => Free(apply(as))))
}
/** See "Abstracting Definitional Interpreters". */
def adi[F[_], A](alg: FAlgebra[F, A], f: (Fix[F] => A) => Fix[F] => A)(implicit F: Functor[F]): Fix[F] => A = {
var self: Fix[F] => A = null
self = f(ff => alg(F.map(ff.unfix)(self)))
self
}
/** See "Abstracting Definitional Interpreters". */
def adiM[M[_], F[_], A](alg: FAlgebraM[M, F, A], f: (Fix[F] => M[A]) => Fix[F] => M[A])(implicit M: Monad[M], F: Traverse[F]): Fix[F] => M[A] = {
var self: Fix[F] => M[A] = null
self = f(ff => M.bind(F.traverse(ff.unfix)(self))(alg))
self
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy