
g1101_1200.s1143_longest_common_subsequence.Solution.c Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-all Show documentation
Show all versions of leetcode-in-all Show documentation
104 LeetCode algorithm problem solutions
// #Medium #Top_100_Liked_Questions #String #Dynamic_Programming
// #Algorithm_II_Day_17_Dynamic_Programming #Dynamic_Programming_I_Day_19
// #Udemy_Dynamic_Programming #Big_O_Time_O(n*m)_Space_O(n*m)
// #2024_11_08_Time_21_ms_(84.72%)_Space_12.2_MB_(58.02%)
#include
#include
int longestCommonSubsequence(char* text1, char* text2) {
int n = strlen(text1);
int m = strlen(text2);
// Create a 2D array to store the lengths of longest common subsequences
int dp[n + 1][m + 1];
// Initialize the dp array
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= m; j++) {
dp[i][j] = 0; // Initialize all values to 0
}
}
// Fill the dp array using bottom-up dynamic programming
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (text1[i - 1] == text2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = (dp[i - 1][j] > dp[i][j - 1]) ? dp[i - 1][j] : dp[i][j - 1];
}
}
}
// The length of the longest common subsequence is stored in dp[n][m]
return dp[n][m];
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy