g0101_0200.s0190_reverse_bits.readme.md Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java Show documentation
Show all versions of leetcode-in-java Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
The newest version!
190\. Reverse Bits
Easy
Reverse bits of a given 32 bits unsigned integer.
**Note:**
* Note that in some languages, such as Java, there is no unsigned integer type. In this case, both input and output will be given as a signed integer type. They should not affect your implementation, as the integer's internal binary representation is the same, whether it is signed or unsigned.
* In Java, the compiler represents the signed integers using [2's complement notation](https://en.wikipedia.org/wiki/Two%27s_complement). Therefore, in **Example 2** above, the input represents the signed integer `-3` and the output represents the signed integer `-1073741825`.
**Example 1:**
**Input:** n = 00000010100101000001111010011100
**Output:** 964176192 (00111001011110000010100101000000)
**Explanation:** The input binary string **00000010100101000001111010011100** represents the unsigned integer 43261596, so return 964176192 which its binary representation is **00111001011110000010100101000000**.
**Example 2:**
**Input:** n = 11111111111111111111111111111101
**Output:** 3221225471 (10111111111111111111111111111111)
**Explanation:** The input binary string **11111111111111111111111111111101** represents the unsigned integer 4294967293, so return 3221225471 which its binary representation is **10111111111111111111111111111111**.
**Constraints:**
* The input must be a **binary string** of length `32`
**Follow up:** If this function is called many times, how would you optimize it?
© 2015 - 2024 Weber Informatics LLC | Privacy Policy