g0401_0500.s0403_frog_jump.readme.md Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java Show documentation
Show all versions of leetcode-in-java Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
The newest version!
403\. Frog Jump
Hard
A frog is crossing a river. The river is divided into some number of units, and at each unit, there may or may not exist a stone. The frog can jump on a stone, but it must not jump into the water.
Given a list of `stones`' positions (in units) in sorted **ascending order**, determine if the frog can cross the river by landing on the last stone. Initially, the frog is on the first stone and assumes the first jump must be `1` unit.
If the frog's last jump was `k` units, its next jump must be either `k - 1`, `k`, or `k + 1` units. The frog can only jump in the forward direction.
**Example 1:**
**Input:** stones = [0,1,3,5,6,8,12,17]
**Output:** true
**Explanation:** The frog can jump to the last stone by jumping 1 unit to the 2nd stone, then 2 units to the 3rd stone, then 2 units to the 4th stone, then 3 units to the 6th stone, 4 units to the 7th stone, and 5 units to the 8th stone.
**Example 2:**
**Input:** stones = [0,1,2,3,4,8,9,11]
**Output:** false
**Explanation:** There is no way to jump to the last stone as the gap between the 5th and 6th stone is too large.
**Constraints:**
* `2 <= stones.length <= 2000`
* 0 <= stones[i] <= 231 - 1
* `stones[0] == 0`
* `stones` is sorted in a strictly increasing order.
© 2015 - 2024 Weber Informatics LLC | Privacy Policy