g0601_0700.s0673_number_of_longest_increasing_subsequence.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java Show documentation
Show all versions of leetcode-in-java Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
The newest version!
package g0601_0700.s0673_number_of_longest_increasing_subsequence;
// #Medium #Array #Dynamic_Programming #Segment_Tree #Binary_Indexed_Tree
// #Algorithm_II_Day_16_Dynamic_Programming #2022_03_22_Time_25_ms_(68.75%)_Space_44.5_MB_(35.85%)
public class Solution {
public int findNumberOfLIS(int[] nums) {
int[] dp = new int[nums.length];
int[] count = new int[nums.length];
dp[0] = 1;
count[0] = 1;
int result = 0;
int max = Integer.MIN_VALUE;
for (int i = 1; i < nums.length; i++) {
dp[i] = 1;
count[i] = 1;
for (int j = i - 1; j >= 0; j--) {
if (nums[j] < nums[i]) {
if (dp[i] < dp[j] + 1) {
dp[i] = dp[j] + 1;
count[i] = count[j];
} else if (dp[i] == dp[j] + 1) {
count[i] += count[j];
}
}
}
}
for (int i = 0; i < nums.length; i++) {
if (max < dp[i]) {
result = count[i];
max = dp[i];
} else if (max == dp[i]) {
result += count[i];
}
}
return result;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy