g0701_0800.s0764_largest_plus_sign.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java Show documentation
Show all versions of leetcode-in-java Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
The newest version!
package g0701_0800.s0764_largest_plus_sign;
// #Medium #Array #Dynamic_Programming #2022_03_26_Time_39_ms_(87.23%)_Space_53.3_MB_(82.98%)
public class Solution {
public int orderOfLargestPlusSign(int n, int[][] mines) {
boolean[][] mat = new boolean[n][n];
for (int[] pos : mines) {
mat[pos[0]][pos[1]] = true;
}
int[][] left = new int[n][n];
int[][] right = new int[n][n];
int[][] up = new int[n][n];
int[][] down = new int[n][n];
int ans = 0;
// For Left and Up only
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
int i1 = j == 0 ? 0 : left[i][j - 1];
left[i][j] = mat[i][j] ? 0 : 1 + i1;
int i2 = i == 0 ? 0 : up[i - 1][j];
up[i][j] = mat[i][j] ? 0 : 1 + i2;
}
}
// For Right and Down and simoultaneously get answer
for (int i = n - 1; i >= 0; i--) {
for (int j = n - 1; j >= 0; j--) {
int i1 = j == n - 1 ? 0 : right[i][j + 1];
right[i][j] = mat[i][j] ? 0 : 1 + i1;
int i2 = i == n - 1 ? 0 : down[i + 1][j];
down[i][j] = mat[i][j] ? 0 : 1 + i2;
int x = Math.min(Math.min(left[i][j], up[i][j]), Math.min(right[i][j], down[i][j]));
ans = Math.max(ans, x);
}
}
return ans;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy