g0901_1000.s0935_knight_dialer.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java Show documentation
Show all versions of leetcode-in-java Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
The newest version!
package g0901_1000.s0935_knight_dialer;
// #Medium #Dynamic_Programming #2022_03_30_Time_4_ms_(99.08%)_Space_42.2_MB_(81.87%)
import java.util.ArrayList;
import java.util.List;
public class Solution {
private static final int[][] MAP = new int[10][];
private static final List MEMO = new ArrayList<>();
static {
MAP[0] = new int[] {4, 6};
MAP[1] = new int[] {6, 8};
MAP[2] = new int[] {7, 9};
MAP[3] = new int[] {4, 8};
MAP[4] = new int[] {3, 9, 0};
MAP[5] = new int[0];
MAP[6] = new int[] {1, 7, 0};
MAP[7] = new int[] {2, 6};
MAP[8] = new int[] {1, 3};
MAP[9] = new int[] {2, 4};
MEMO.add(new int[] {1, 1, 1, 1, 1, 0, 1, 1, 1, 1});
}
public int knightDialer(int n) {
if (n == 1) {
return 10;
}
int mod = 1000_000_007;
while (MEMO.size() < n) {
int[] cur = MEMO.get(MEMO.size() - 1);
int[] next = new int[10];
for (int i = 0; i < 10; i++) {
for (int d : MAP[i]) {
next[d] = (next[d] + cur[i]) % mod;
}
}
MEMO.add(next);
}
int sum = 0;
for (int x : MEMO.get(n - 1)) {
sum = (sum + x) % mod;
}
return sum;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy