g2401_2500.s2407_longest_increasing_subsequence_ii.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java Show documentation
Show all versions of leetcode-in-java Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
The newest version!
package g2401_2500.s2407_longest_increasing_subsequence_ii;
// #Hard #Array #Dynamic_Programming #Divide_and_Conquer #Queue #Segment_Tree #Binary_Indexed_Tree
// #Monotonic_Queue #2022_10_24_Time_24_ms_(99.21%)_Space_50.3_MB_(98.08%)
public class Solution {
private static class SegTree {
private int[] arr;
private int n;
public SegTree(int n) {
this.n = n;
arr = new int[2 * n];
}
public int query(int l, int r) {
l += n;
r += n;
int ans = 0;
while (l < r) {
if ((l & 1) == 1) {
ans = Math.max(ans, arr[l]);
l += 1;
}
if ((r & 1) == 1) {
r -= 1;
ans = Math.max(ans, arr[r]);
}
l = l >> 1;
r = r >> 1;
}
return ans;
}
public void update(int i, int val) {
i += n;
arr[i] = val;
while (i > 0) {
i = i >> 1;
arr[i] = Math.max(arr[2 * i], arr[2 * i + 1]);
}
}
}
public int lengthOfLIS(int[] nums, int k) {
int max = 0;
for (int n : nums) {
max = Math.max(max, n);
}
SegTree seg = new SegTree(max);
int ans = 0;
for (int n : nums) {
n -= 1;
int temp = seg.query(Math.max(0, n - k), n) + 1;
ans = Math.max(ans, temp);
seg.update(n, temp);
}
return ans;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy