g2601_2700.s2601_prime_subtraction_operation.readme.md Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java Show documentation
Show all versions of leetcode-in-java Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
The newest version!
2601\. Prime Subtraction Operation
Medium
You are given a **0-indexed** integer array `nums` of length `n`.
You can perform the following operation as many times as you want:
* Pick an index `i` that you haven’t picked before, and pick a prime `p` **strictly less than** `nums[i]`, then subtract `p` from `nums[i]`.
Return _true if you can make `nums` a strictly increasing array using the above operation and false otherwise._
A **strictly increasing array** is an array whose each element is strictly greater than its preceding element.
**Example 1:**
**Input:** nums = [4,9,6,10]
**Output:** true
**Explanation:** In the first operation: Pick i = 0 and p = 3, and then subtract 3 from nums[0], so that nums becomes [1,9,6,10]. In the second operation: i = 1, p = 7, subtract 7 from nums[1], so nums becomes equal to [1,2,6,10]. After the second operation, nums is sorted in strictly increasing order, so the answer is true.
**Example 2:**
**Input:** nums = [6,8,11,12]
**Output:** true
**Explanation:** Initially nums is sorted in strictly increasing order, so we don't need to make any operations.
**Example 3:**
**Input:** nums = [5,8,3]
**Output:** false
**Explanation:** It can be proven that there is no way to perform operations to make nums sorted in strictly increasing order, so the answer is false.
**Constraints:**
* `1 <= nums.length <= 1000`
* `1 <= nums[i] <= 1000`
* `nums.length == n`
© 2015 - 2024 Weber Informatics LLC | Privacy Policy