g2901_3000.s2961_double_modular_exponentiation.readme.md Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java Show documentation
Show all versions of leetcode-in-java Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
The newest version!
2961\. Double Modular Exponentiation
Medium
You are given a **0-indexed** 2D array `variables` where variables[i] = [ai, bi, ci, mi]
, and an integer `target`.
An index `i` is **good** if the following formula holds:
* `0 <= i < variables.length`
* ((aibi % 10)ci) % mi == target
Return _an array consisting of **good** indices in **any order**_.
**Example 1:**
**Input:** variables = [[2,3,3,10],[3,3,3,1],[6,1,1,4]], target = 2
**Output:** [0,2]
**Explanation:** For each index i in the variables array:
1) For the index 0, variables[0] = [2,3,3,10], (23 % 10)3 % 10 = 2.
2) For the index 1, variables[1] = [3,3,3,1], (33 % 10)3 % 1 = 0.
3) For the index 2, variables[2] = [6,1,1,4], (61 % 10)1 % 4 = 2.
Therefore we return [0,2] as the answer.
**Example 2:**
**Input:** variables = [[39,3,1000,1000]], target = 17
**Output:** []
**Explanation:** For each index i in the variables array:
1) For the index 0, variables[0] = [39,3,1000,1000], (393 % 10)1000 % 1000 = 1.
Therefore we return [] as the answer.
**Constraints:**
* `1 <= variables.length <= 100`
* variables[i] == [ai, bi, ci, mi]
* 1 <= ai, bi, ci, mi <= 103
* 0 <= target <= 103
© 2015 - 2024 Weber Informatics LLC | Privacy Policy