g3101_3200.s3139_minimum_cost_to_equalize_array.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java Show documentation
Show all versions of leetcode-in-java Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
The newest version!
package g3101_3200.s3139_minimum_cost_to_equalize_array;
// #Hard #Array #Greedy #Enumeration #2024_05_07_Time_1_ms_(100.00%)_Space_57.2_MB_(83.16%)
public class Solution {
private static final int MOD = 1_000_000_007;
private static final long LMOD = MOD;
public int minCostToEqualizeArray(int[] nums, int cost1, int cost2) {
long max = 0L;
long min = Long.MAX_VALUE;
long sum = 0L;
for (long num : nums) {
if (num > max) {
max = num;
}
if (num < min) {
min = num;
}
sum += num;
}
final int n = nums.length;
long total = max * n - sum;
// When operation one is always better:
if ((cost1 << 1) <= cost2 || n <= 2) {
return (int) (total * cost1 % LMOD);
}
// When operation two is moderately better:
long op1 = Math.max(0L, ((max - min) << 1L) - total);
long op2 = total - op1;
long result = (op1 + (op2 & 1L)) * cost1 + (op2 >> 1L) * cost2;
// When operation two is significantly better:
total += op1 / (n - 2L) * n;
op1 %= n - 2L;
op2 = total - op1;
result = Math.min(result, (op1 + (op2 & 1L)) * cost1 + (op2 >> 1L) * cost2);
// When operation two is always better:
for (int i = 0; i < 2; ++i) {
total += n;
result = Math.min(result, (total & 1L) * cost1 + (total >> 1L) * cost2);
}
return (int) (result % LMOD);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy