g0801_0900.s0840_magic_squares_in_grid.Solution Maven / Gradle / Ivy
package g0801_0900.s0840_magic_squares_in_grid;
// #Medium #Array #Math #Matrix #2022_03_24_Time_0_ms_(100.00%)_Space_40.3_MB_(69.71%)
import java.util.HashSet;
import java.util.Set;
/**
* 840 - Magic Squares In Grid\.
*
* Medium
*
* A `3 x 3` magic square is a `3 x 3` grid filled with distinct numbers **from** `1` **to** `9` such that each row, column, and both diagonals all have the same sum.
*
* Given a `row x col` `grid` of integers, how many `3 x 3` "magic square" subgrids are there? (Each subgrid is contiguous).
*
* **Example 1:**
*
* 
*
* **Input:** grid = \[\[4,3,8,4],[9,5,1,9],[2,7,6,2]]
*
* **Output:** 1
*
* **Explanation:** The following subgrid is a 3 x 3 magic square:  while this one is not:  In total, there is only one magic square inside the given grid.
*
* **Example 2:**
*
* **Input:** grid = \[\[8]]
*
* **Output:** 0
*
* **Constraints:**
*
* * `row == grid.length`
* * `col == grid[i].length`
* * `1 <= row, col <= 10`
* * `0 <= grid[i][j] <= 15`
**/
public class Solution {
public int numMagicSquaresInside(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int count = 0;
for (int i = 0; i < m - 2; i++) {
for (int j = 0; j < n - 2; j++) {
Set set = new HashSet<>();
int sum = grid[i][j] + grid[i][j + 1] + grid[i][j + 2];
if (sum == grid[i + 1][j] + grid[i + 1][j + 1] + grid[i + 1][j + 2]
&& sum == grid[i + 2][j] + grid[i + 2][j + 1] + grid[i + 2][j + 2]
&& sum == grid[i][j] + grid[i + 1][j] + grid[i + 2][j]
&& sum == grid[i][j + 1] + grid[i + 1][j + 1] + grid[i + 2][j + 1]
&& sum == grid[i][j + 2] + grid[i + 1][j + 2] + grid[i + 2][j + 2]
&& sum == grid[i][j] + grid[i + 1][j + 1] + grid[i + 2][j + 2]
&& sum == grid[i][j + 2] + grid[i + 1][j + 1] + grid[i + 2][j]
&& set.add(grid[i][j])
&& isLegit(grid[i][j])
&& set.add(grid[i][j + 1])
&& isLegit(grid[i][j + 1])
&& set.add(grid[i][j + 2])
&& isLegit(grid[i][j + 2])
&& set.add(grid[i + 1][j])
&& isLegit(grid[i + 1][j])
&& set.add(grid[i + 1][j + 1])
&& isLegit(grid[i + 1][j + 1])
&& set.add(grid[i + 1][j + 2])
&& isLegit(grid[i + 1][j + 2])
&& set.add(grid[i + 2][j])
&& isLegit(grid[i + 2][j])
&& set.add(grid[i + 2][j + 1])
&& isLegit(grid[i + 2][j + 1])
&& set.add(grid[i + 2][j + 2])
&& isLegit(grid[i + 2][j + 2])) {
count++;
}
}
}
return count;
}
private boolean isLegit(int num) {
return num <= 9 && num >= 1;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy