g0901_1000.s0996_number_of_squareful_arrays.Solution Maven / Gradle / Ivy
package g0901_1000.s0996_number_of_squareful_arrays;
// #Hard #Array #Dynamic_Programming #Math #Bit_Manipulation #Backtracking #Bitmask
// #2022_03_31_Time_2_ms_(72.32%)_Space_41.9_MB_(32.14%)
import java.util.HashSet;
import java.util.Set;
/**
* 996 - Number of Squareful Arrays\.
*
* Hard
*
* An array is **squareful** if the sum of every pair of adjacent elements is a **perfect square**.
*
* Given an integer array nums, return _the number of permutations of_ `nums` _that are **squareful**_.
*
* Two permutations `perm1` and `perm2` are different if there is some index `i` such that `perm1[i] != perm2[i]`.
*
* **Example 1:**
*
* **Input:** nums = [1,17,8]
*
* **Output:** 2
*
* **Explanation:** [1,8,17] and [17,8,1] are the valid permutations.
*
* **Example 2:**
*
* **Input:** nums = [2,2,2]
*
* **Output:** 1
*
* **Constraints:**
*
* * `1 <= nums.length <= 12`
* * 0 <= nums[i] <= 109
**/
public class Solution {
int count;
public int numSquarefulPerms(int[] nums) {
int n = nums.length;
if (n < 2) {
return count;
}
backtrack(nums, n, 0);
return count;
}
private void backtrack(int[] nums, int n, int start) {
if (start == n) {
count++;
}
Set set = new HashSet<>();
for (int i = start; i < n; i++) {
if (set.contains(nums[i])) {
continue;
}
swap(nums, start, i);
if (start == 0 || isPerfectSq(nums[start], nums[start - 1])) {
backtrack(nums, n, start + 1);
}
swap(nums, start, i);
set.add(nums[i]);
}
}
private void swap(int[] array, int a, int b) {
int temp = array[a];
array[a] = array[b];
array[b] = temp;
}
private boolean isPerfectSq(int a, int b) {
int x = a + b;
double sqrt = Math.sqrt(x);
return sqrt - (int) sqrt == 0;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy