g0001_0100.s0011_container_with_most_water.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g0001_0100.s0011_container_with_most_water;
// #Medium #Top_100_Liked_Questions #Top_Interview_Questions #Array #Greedy #Two_Pointers
// #Algorithm_II_Day_4_Two_Pointers #Big_O_Time_O(n)_Space_O(1)
// #2023_08_09_Time_3_ms_(94.75%)_Space_56.2_MB_(5.82%)
/**
* 11 - Container With Most Water\.
*
* Medium
*
* Given `n` non-negative integers a1, a2, ..., an
, where each represents a point at coordinate (i, ai)
. `n` vertical lines are drawn such that the two endpoints of the line `i` is at (i, ai)
and `(i, 0)`. Find two lines, which, together with the x-axis forms a container, such that the container contains the most water.
*
* **Notice** that you may not slant the container.
*
* **Example 1:**
*
* ![](https://s3-lc-upload.s3.amazonaws.com/uploads/2018/07/17/question_11.jpg)
*
* **Input:** height = [1,8,6,2,5,4,8,3,7]
*
* **Output:** 49
*
* **Explanation:** The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
*
* **Example 2:**
*
* **Input:** height = [1,1]
*
* **Output:** 1
*
* **Example 3:**
*
* **Input:** height = [4,3,2,1,4]
*
* **Output:** 16
*
* **Example 4:**
*
* **Input:** height = [1,2,1]
*
* **Output:** 2
*
* **Constraints:**
*
* * `n == height.length`
* * 2 <= n <= 105
* * 0 <= height[i] <= 104
**/
public class Solution {
public int maxArea(int[] height) {
int maxArea = -1;
int left = 0;
int right = height.length - 1;
while (left < right) {
if (height[left] < height[right]) {
maxArea = Math.max(maxArea, height[left] * (right - left));
left++;
} else {
maxArea = Math.max(maxArea, height[right] * (right - left));
right--;
}
}
return maxArea;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy