g0001_0100.s0053_maximum_subarray.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g0001_0100.s0053_maximum_subarray;
// #Easy #Top_100_Liked_Questions #Top_Interview_Questions #Array #Dynamic_Programming
// #Divide_and_Conquer #Data_Structure_I_Day_1_Array #Dynamic_Programming_I_Day_5
// #Udemy_Famous_Algorithm #Big_O_Time_O(n)_Space_O(1)
// #2023_08_11_Time_1_ms_(100.00%)_Space_57.7_MB_(90.58%)
/**
* 53 - Maximum Subarray\.
*
* Easy
*
* Given an integer array `nums`, find the contiguous subarray (containing at least one number) which has the largest sum and return _its sum_.
*
* A **subarray** is a **contiguous** part of an array.
*
* **Example 1:**
*
* **Input:** nums = [-2,1,-3,4,-1,2,1,-5,4]
*
* **Output:** 6
*
* **Explanation:** [4,-1,2,1] has the largest sum = 6.
*
* **Example 2:**
*
* **Input:** nums = [1]
*
* **Output:** 1
*
* **Example 3:**
*
* **Input:** nums = [5,4,-1,7,8]
*
* **Output:** 23
*
* **Constraints:**
*
* * 1 <= nums.length <= 105
* * -104 <= nums[i] <= 104
*
* **Follow up:** If you have figured out the `O(n)` solution, try coding another solution using the **divide and conquer** approach, which is more subtle.
**/
public class Solution {
public int maxSubArray(int[] nums) {
int maxi = Integer.MIN_VALUE;
int sum = 0;
for (int num : nums) {
// calculating sub-array sum
sum += num;
maxi = Math.max(sum, maxi);
if (sum < 0) {
// there is no point to carry a -ve subarray sum. hence setting to 0
sum = 0;
}
}
return maxi;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy