All Downloads are FREE. Search and download functionalities are using the official Maven repository.

g0001_0100.s0064_minimum_path_sum.Solution Maven / Gradle / Ivy

There is a newer version: 1.38
Show newest version
package g0001_0100.s0064_minimum_path_sum;

// #Medium #Top_100_Liked_Questions #Array #Dynamic_Programming #Matrix
// #Dynamic_Programming_I_Day_16 #Udemy_Dynamic_Programming #Big_O_Time_O(m*n)_Space_O(m*n)
// #2023_08_11_Time_0_ms_(100.00%)_Space_44_MB_(58.56%)

/**
 * 64 - Minimum Path Sum\.
 *
 * Medium
 *
 * Given a `m x n` `grid` filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
 *
 * **Note:** You can only move either down or right at any point in time.
 *
 * **Example 1:**
 *
 * ![](https://assets.leetcode.com/uploads/2020/11/05/minpath.jpg)
 *
 * **Input:** grid = \[\[1,3,1],[1,5,1],[4,2,1]]
 *
 * **Output:** 7
 *
 * **Explanation:** Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum. 
 *
 * **Example 2:**
 *
 * **Input:** grid = \[\[1,2,3],[4,5,6]]
 *
 * **Output:** 12 
 *
 * **Constraints:**
 *
 * *   `m == grid.length`
 * *   `n == grid[i].length`
 * *   `1 <= m, n <= 200`
 * *   `0 <= grid[i][j] <= 100`
**/
public class Solution {
    public int minPathSum(int[][] grid) {
        if (grid.length == 1 && grid[0].length == 1) {
            return grid[0][0];
        }
        int[][] dm = new int[grid.length][grid[0].length];
        int s = 0;
        for (int r = grid.length - 1; r >= 0; r--) {
            dm[r][grid[0].length - 1] = grid[r][grid[0].length - 1] + s;
            s += grid[r][grid[0].length - 1];
        }
        s = 0;
        for (int c = grid[0].length - 1; c >= 0; c--) {
            dm[grid.length - 1][c] = grid[grid.length - 1][c] + s;
            s += grid[grid.length - 1][c];
        }
        return recur(grid, dm, 0, 0);
    }

    private int recur(int[][] grid, int[][] dm, int r, int c) {
        if (dm[r][c] == 0 && r != grid.length - 1 && c != grid[0].length - 1) {
            dm[r][c] = grid[r][c] + Math.min(recur(grid, dm, r + 1, c), recur(grid, dm, r, c + 1));
        }
        return dm[r][c];
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy