g0001_0100.s0069_sqrtx.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g0001_0100.s0069_sqrtx;
// #Easy #Top_Interview_Questions #Math #Binary_Search #Binary_Search_I_Day_4
// #2023_08_11_Time_1_ms_(99.51%)_Space_39.5_MB_(78.13%)
/**
* 69 - Sqrt(x)\.
*
* Easy
*
* Given a non-negative integer `x`, compute and return _the square root of_ `x`.
*
* Since the return type is an integer, the decimal digits are **truncated** , and only **the integer part** of the result is returned.
*
* **Note:** You are not allowed to use any built-in exponent function or operator, such as `pow(x, 0.5)` or `x ** 0.5`.
*
* **Example 1:**
*
* **Input:** x = 4
*
* **Output:** 2
*
* **Example 2:**
*
* **Input:** x = 8
*
* **Output:** 2
*
* **Explanation:** The square root of 8 is 2.82842..., and since the decimal part is truncated, 2 is returned.
*
* **Constraints:**
*
* * 0 <= x <= 231 - 1
**/
public class Solution {
public int mySqrt(int x) {
int start = 1;
int end = x / 2;
int sqrt = start + (end - start) / 2;
if (x == 0) {
return 0;
}
while (start <= end) {
if (sqrt == x / sqrt) {
return sqrt;
} else if (sqrt > x / sqrt) {
end = sqrt - 1;
} else if (sqrt < x / sqrt) {
start = sqrt + 1;
}
sqrt = start + (end - start) / 2;
}
if (sqrt > x / sqrt) {
return sqrt - 1;
} else {
return sqrt;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy