g0201_0300.s0208_implement_trie_prefix_tree.Trie Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g0201_0300.s0208_implement_trie_prefix_tree;
// #Medium #Top_100_Liked_Questions #Top_Interview_Questions #String #Hash_Table #Design #Trie
// #Level_2_Day_16_Design #Udemy_Trie_and_Heap
// #Big_O_Time_O(word.length())_or_O(prefix.length())_Space_O(N)
// #2022_06_28_Time_34_ms_(99.90%)_Space_51_MB_(94.92%)
/**
* 208 - Implement Trie (Prefix Tree)\.
*
* Medium
*
* A [**trie** ](https://en.wikipedia.org/wiki/Trie) (pronounced as "try") or **prefix tree** is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.
*
* Implement the Trie class:
*
* * `Trie()` Initializes the trie object.
* * `void insert(String word)` Inserts the string `word` into the trie.
* * `boolean search(String word)` Returns `true` if the string `word` is in the trie (i.e., was inserted before), and `false` otherwise.
* * `boolean startsWith(String prefix)` Returns `true` if there is a previously inserted string `word` that has the prefix `prefix`, and `false` otherwise.
*
* **Example 1:**
*
* **Input**
*
* ["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
* [ [], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
*
* **Output:** [null, null, true, false, true, null, true]
*
* **Explanation:**
*
* Trie trie = new Trie();
* trie.insert("apple"); trie.search("apple"); // return True
* trie.search("app"); // return False
* trie.startsWith("app"); // return True
* trie.insert("app");
* trie.search("app"); // return True
*
* **Constraints:**
*
* * `1 <= word.length, prefix.length <= 2000`
* * `word` and `prefix` consist only of lowercase English letters.
* * At most 3 * 104
calls **in total** will be made to `insert`, `search`, and `startsWith`.
**/
@SuppressWarnings("java:S1104")
public class Trie {
private TrieNode root;
private boolean startWith;
private static class TrieNode {
// Initialize your data structure here.
public TrieNode[] children;
public boolean isWord;
public TrieNode() {
children = new TrieNode[26];
}
}
public Trie() {
root = new TrieNode();
}
// Inserts a word into the trie.
public void insert(String word) {
insert(word, root, 0);
}
private void insert(String word, TrieNode root, int idx) {
if (idx == word.length()) {
root.isWord = true;
return;
}
int index = word.charAt(idx) - 'a';
if (root.children[index] == null) {
root.children[index] = new TrieNode();
}
insert(word, root.children[index], idx + 1);
}
// Returns if the word is in the trie.
public boolean search(String word) {
return search(word, root, 0);
}
public boolean search(String word, TrieNode root, int idx) {
if (idx == word.length()) {
startWith = true;
return root.isWord;
}
int index = word.charAt(idx) - 'a';
if (root.children[index] == null) {
startWith = false;
return false;
}
return search(word, root.children[index], idx + 1);
}
// Returns if there is any word in the trie
// that starts with the given prefix.
public boolean startsWith(String prefix) {
search(prefix);
return startWith;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy