g0201_0300.s0222_count_complete_tree_nodes.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g0201_0300.s0222_count_complete_tree_nodes;
// #Medium #Depth_First_Search #Tree #Binary_Search #Binary_Tree #Binary_Search_II_Day_10
// #2022_07_04_Time_0_ms_(100.00%)_Space_50_MB_(37.43%)
import com_github_leetcode.TreeNode;
/*
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
/**
* 222 - Count Complete Tree Nodes\.
*
* Medium
*
* Given the `root` of a **complete** binary tree, return the number of the nodes in the tree.
*
* According to **[Wikipedia](http://en.wikipedia.org/wiki/Binary_tree#Types_of_binary_trees)** , every level, except possibly the last, is completely filled in a complete binary tree, and all nodes in the last level are as far left as possible. It can have between `1` and 2h
nodes inclusive at the last level `h`.
*
* Design an algorithm that runs in less than `O(n)` time complexity.
*
* **Example 1:**
*
* ![](https://assets.leetcode.com/uploads/2021/01/14/complete.jpg)
*
* **Input:** root = [1,2,3,4,5,6]
*
* **Output:** 6
*
* **Example 2:**
*
* **Input:** root = []
*
* **Output:** 0
*
* **Example 3:**
*
* **Input:** root = [1]
*
* **Output:** 1
*
* **Constraints:**
*
* * The number of nodes in the tree is in the range [0, 5 * 104]
.
* * 0 <= Node.val <= 5 * 104
* * The tree is guaranteed to be **complete**.
**/
public class Solution {
public int countNodes(TreeNode root) {
if (root == null) {
return 0;
}
int leftHeight = leftHeight(root);
int rightHeight = rightHeight(root);
// case 1: When Height(Left sub-tree) = Height(right sub-tree) 2^h - 1
if (leftHeight == rightHeight) {
return (1 << leftHeight) - 1;
} else {
return 1 + countNodes(root.left) + countNodes(root.right);
}
}
private int leftHeight(TreeNode root) {
if (root == null) {
return 0;
}
return 1 + leftHeight(root.left);
}
private int rightHeight(TreeNode root) {
if (root == null) {
return 0;
}
return 1 + rightHeight(root.right);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy