g0201_0300.s0279_perfect_squares.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g0201_0300.s0279_perfect_squares;
// #Medium #Top_Interview_Questions #Dynamic_Programming #Math #Breadth_First_Search
// #Dynamic_Programming_I_Day_21 #2022_07_06_Time_1_ms_(100.00%)_Space_40.2_MB_(99.44%)
/**
* 279 - Perfect Squares\.
*
* Medium
*
* Given an integer `n`, return _the least number of perfect square numbers that sum to_ `n`.
*
* A **perfect square** is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, `1`, `4`, `9`, and `16` are perfect squares while `3` and `11` are not.
*
* **Example 1:**
*
* **Input:** n = 12
*
* **Output:** 3
*
* **Explanation:** 12 = 4 + 4 + 4.
*
* **Example 2:**
*
* **Input:** n = 13
*
* **Output:** 2
*
* **Explanation:** 13 = 4 + 9.
*
* **Constraints:**
*
* * 1 <= n <= 104
**/
public class Solution {
private boolean validSquare(int n) {
int root = (int) Math.sqrt(n);
return root * root == n;
}
public int numSquares(int n) {
if (n < 4) {
return n;
}
if (validSquare(n)) {
return 1;
}
while ((n & 3) == 0) {
n >>= 2;
}
if ((n & 7) == 7) {
return 4;
}
int x = (int) Math.sqrt(n);
for (int i = 1; i <= x; i++) {
if (validSquare(n - i * i)) {
return 2;
}
}
return 3;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy