g0201_0300.s0300_longest_increasing_subsequence.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g0201_0300.s0300_longest_increasing_subsequence;
// #Medium #Top_100_Liked_Questions #Top_Interview_Questions #Array #Dynamic_Programming
// #Binary_Search #Algorithm_II_Day_16_Dynamic_Programming #Binary_Search_II_Day_3
// #Dynamic_Programming_I_Day_18 #Udemy_Dynamic_Programming #Big_O_Time_O(n*log_n)_Space_O(n)
// #2022_07_06_Time_3_ms_(98.63%)_Space_44.3_MB_(60.27%)
/**
* 300 - Longest Increasing Subsequence\.
*
* Medium
*
* Given an integer array `nums`, return the length of the longest strictly increasing subsequence.
*
* A **subsequence** is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, `[3,6,2,7]` is a subsequence of the array `[0,3,1,6,2,2,7]`.
*
* **Example 1:**
*
* **Input:** nums = [10,9,2,5,3,7,101,18]
*
* **Output:** 4
*
* **Explanation:** The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
*
* **Example 2:**
*
* **Input:** nums = [0,1,0,3,2,3]
*
* **Output:** 4
*
* **Example 3:**
*
* **Input:** nums = [7,7,7,7,7,7,7]
*
* **Output:** 1
*
* **Constraints:**
*
* * `1 <= nums.length <= 2500`
* * -104 <= nums[i] <= 104
*
* **Follow up:** Can you come up with an algorithm that runs in `O(n log(n))` time complexity?
**/
public class Solution {
public int lengthOfLIS(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
int[] dp = new int[nums.length + 1];
// prefill the dp table
for (int i = 1; i < dp.length; i++) {
dp[i] = Integer.MAX_VALUE;
}
int left = 1;
int right = 1;
for (int curr : nums) {
int start = left;
int end = right;
// binary search, find the one that is lower than curr
while (start + 1 < end) {
int mid = start + (end - start) / 2;
if (dp[mid] > curr) {
end = mid;
} else {
start = mid;
}
}
// update our dp table
if (dp[start] > curr) {
dp[start] = curr;
} else if (curr > dp[start] && curr < dp[end]) {
dp[end] = curr;
} else if (curr > dp[end]) {
dp[++end] = curr;
right++;
}
}
return right;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy