g0501_0600.s0526_beautiful_arrangement.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g0501_0600.s0526_beautiful_arrangement;
// #Medium #Array #Dynamic_Programming #Bit_Manipulation #Backtracking #Bitmask
// #2022_07_28_Time_3_ms_(98.66%)_Space_41.5_MB_(24.19%)
/**
* 526 - Beautiful Arrangement\.
*
* Medium
*
* Suppose you have `n` integers labeled `1` through `n`. A permutation of those `n` integers `perm` ( **1-indexed** ) is considered a **beautiful arrangement** if for every `i` (`1 <= i <= n`), **either** of the following is true:
*
* * `perm[i]` is divisible by `i`.
* * `i` is divisible by `perm[i]`.
*
* Given an integer `n`, return _the **number** of the **beautiful arrangements** that you can construct_.
*
* **Example 1:**
*
* **Input:** n = 2
*
* **Output:** 2
*
* **Explanation:**
*
* The first beautiful arrangement is [1,2]:
*
* - perm[1] = 1 is divisible by i = 1
*
* - perm[2] = 2 is divisible by i = 2
*
* The second beautiful arrangement is [2,1]:
*
* - perm[1] = 2 is divisible by i = 1
*
* - i = 2 is divisible by perm[2] = 1
*
* **Example 2:**
*
* **Input:** n = 1
*
* **Output:** 1
*
* **Constraints:**
*
* * `1 <= n <= 15`
**/
public class Solution {
public int countArrangement(int n) {
return backtrack(n, n, new Integer[1 << (n + 1)], 0);
}
private int backtrack(int n, int index, Integer[] cache, int cacheindex) {
if (index == 0) {
return 1;
}
int result = 0;
if (cache[cacheindex] != null) {
return cache[cacheindex];
}
for (int i = n; i > 0; i--) {
if ((cacheindex & (1 << i)) == 0 && (i % (index) == 0 || (index) % i == 0)) {
result += backtrack(n, index - 1, cache, cacheindex | 1 << i);
}
}
cache[cacheindex] = result;
return result;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy